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ABSTRACT 

Multi-level analysis is an efficient method for analysis of the data in more than one levels and is the 

extended state of generalized linear models in which besides varied modeling, regression coefficients 
response is also modeled. Regarding continuous data in which dependence of dependent variables to 

independence variables is observed, to define which regression models or multi-levels are used, we can 

consider ICC (Intra-class correlation coefficient). In this study, we can determine ICC cut off point to use 

multi-level model of the data in which leveling nature is seen or REML method. 
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INTRODUCTION  

Many  kinds  of  data,  including  observational  data  collected  in  the  human  and  biological  sciences,  

have  a  hierarchical  or  clustered  structure.    For  example,  animal  and  human studies  of  inheritance  
deal  with  a  natural  hierarchy  where  offspring  are  grouped  within families. Offspring from the same 

parents tend to be more alike in their physical and mental characteristics than individuals chosen at 

random from the population at large. For instance, children from the same family may all tend to be 

small, perhaps because their parents are small or because of a common impoverished environment 
(Goldstein, 2010). 

Such data are called nested data or hierarchy structure data. Although statistical analysis of such data is 

possible by common linear regression method, as one of the basic assumptions of simple regression is 
statistical independence of all observations, the problem of this assumption causes that standard error of 

model parameters estimation is estimated less potentially (Cohen, 1998). 

Based on the above example, if independence assumption is not established between the observations, 
using regression common models has problems (Pinherio and Bates, 2000). 

The suitable model of the analysis of above example data is multi-level model. 

Linear mixed-effects models with nested grouping factors, generally called multilevel models (Goldstein, 

1995) or hierarchical linear models (Bryk and Raudenbush, 1992.( 
This model is called by other equal names in statistical articles and books as random effects, panel 

models, nested models and cluster models (Look, 2004). 

The main feature of multi-level data is their leveling feature. Normally, the studied groups are selected as 
random and besides the error of measuring the intra-observation in each group, another error of sampling 

the groups is involved in multi-level data analysis. The traditional methods of regression models ignore 

this second error. In addition, we can refer to the lack of generalizing the results of leveling to total group 

and the lack of detecting variability of the group as other disadvantages of common regression models. 
Multi-level analysis models can eliminate these problems. By multi-level analysis models, we can 

estimate many parameters and reduce measurement error. The important point is that the parameter 

estimation method in multi-level model is different from estimation method in simple regression. Many 
data including het data of some of observations of human and biological sciences have cluster or 

hierarchy structure. The offspring of a family are much similar compared to other people in society form 

physical and mental features (e.g. the children are considered as level 1 and families as level 2). From 
statistical aspect, people similarity to each other indicates the lack of independence of data. Two people 

belonging to a father and mother are similar to each other from many conditions (Goldstain, 1987). 
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As another example, if the child of a family has special disease as hepatitis, his brothers and sisters can 

have this problem or in the studies of the repeated measures on effective variables on blood pressure, 

blood pressure of samples can be measured in various times. In the blood pressure of each person, due to 
some conditions, some changes are made over time. In this example, the set of measures in various times 

is for each of the members of first level units as defined for each unit of second level. Regarding the 

justification of the fact as why in repetitive sizes, it is considered as level 1 in longitudinal studies, we can 
consider the correlation of repetitive observations as specific belonging to a person. These correlations are 

observed in cross section plans in nested structure (Hox, 2002). 

Intra-class correlation coefficient (ICC) is a type of correlation coefficient expressing the agreement 

between some sets of data. 
In multi-level modeling, this coefficient indicates the ratio of intergroup variance to total variance and the 

higher this ratio, we can say multilevel and grouping between the data are significant and using multi-

level modeling is preferred to simple regression (Luke, 2004). 
The comparison of estimators of multi-level model and equivalent estimator in regression model in 

various ICCs can show from which level of ICC, the estimator of multi-level model is preferred to 

regression. 
This study attempts to show that by data simulation with pre-determined ICC and definite parameters by 

REML method in regression and multi-level case (random intercept) fitting is done for data and by 

comparison of AIC and Loglik mean and the mean of absolute value of models coefficients with pre-

defined coefficients, we can define after which ICC , multi-level model acts better than regression model 
and we can achieve acceptable approximation of ICC for cutoff point of using multi-level model. 

The history of multi-level models. 

In the mid 1980, some researchers presented systematic views for modeling and analysis of the data with 
multi-level structure. 

The first works of Aitkin et al., (1980) on the relevant data of learning method and then Longford 

common works (1968) founded the basis of some progresses in this regard and the result of these 

progresses showed that in the early 1990, the main core of such models was formed. Goldstein (1987) 
wrote a book “Multilevel Models in Educational and Social Research”. Brky and Raudenbush (1992) 

developed linear models 2, 3 levels and their application on repetitive measures. Later, Longford (1993) 

extended multi-level models theory for factor analysis model of batch or classified responses and multi-
variable models.  

These models are used widely in analysis of various academic, educational, epidemiology, children 

growth, household investigations and the data with hierarchy structure. Leonardo and Carla (2005) 
introduced ICC=0.05 as an idea for threshold in using Multilevel factor models for ordinal variables with 

random intercept for discrete ordinal variables. 

Explanation of Multi-level Modeling 

For accurate analysis of the data needing multi-level modeling with nested structure, we need multi-level 
modeling. Multi-level analysis (nested) is extended case of generalized linear models in which besides 

modeling, regression coefficients response is also modeled. 

The aim of multi-level models is modeling dependent variable based on a function of predictive variables 
(independent) in more than one levels. Multi-level analysis is also recognized by other names as 

Hierarchical linear models, mixed coefficients models and Random coefficients models. 

Suppose, a researcher attempts to observe and test  the relationship between the score of literature with 
two variables of the number of student studying hours (variable level 1) and class size (level 2 variable). 

He applies two-level model for modeling the data. Equation (1) indicates the modeling of response 

variable by him. 

                                                                        (1) 
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                                            (2) 

Cov(U,e)=0 
These equations not only show the predictive and dependent variables, but also they draw the multi-level 

nature of the model. In equation (1) level 1 is like an ordinary regression model but index j shows that 

level 1 for each of levels j of classroom (level 2 of study) is a different level 1 model as estimated and it 
means that each class has different intercepts (β0js) and slope of lines and the different effects of study 

time on score (β1js) are different. 

Part 2 of equation (1) (level 2) indicates the relationship of level 1 parameters with level 2 variables. 

Instead of using such  equations to define multi-level models, we can replace some parts of level 2 of 
model inside equation level 1. After placement and ordering the terms, we achieve equation 3. 

                                  (3) 

 

 

 

 
 

Table 1: Different multi-level models 

Random equations system Multi-level equations 

system 

Class name 

  

 

Unconstrained 

  

 

Random 

intercepts 

  

 

 

 

  

 

 

random 

intercepts & 

slopes 

  

 

 

 

 

The first parenthesis is called constant and the second parenthesis is called random part of model. 

Now we can rewrite equation (3) as equation (4). 

                                                                                                                    (4) 

Where, X is independent observations matrix for fixed effects Z as matrix of independent observations for 

random effects, α is fixed coefficients vector, β is random coefficients vector of model and finally e is 
model error. 

Random part Fixed part 
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Equation (3), (4) can be written as equation 5. 

                                       (5) 

 

 

     ,       

The major advantage of displaying multi-level equations as equation 5 is as this form and by normal 

distribution statistic features; we can estimate fixed, random coefficients and model variance components. 

Another important issue is that multi-level models are classified into three general classes and these three 
classes in (Table 1) are presented for two-level models (Luke, 2004). 

Model Fitting Methods 

There are various estimation methods to estimate model coefficients in multi-level modeling. One of 

these methods is Maximum Likelihood Estimator (MLE), Residual Maximum Likelihood Estimation 
(REMLE) and it is called constrained liklihood method in some books. Indeed, it is MLE method in 

which  

Likelihood function is modified. We can refer to Iterative Generalized Least Squares (IGLS), Restricted 
Iterative Generalized Least Squares (RIGLS), Bayesian methods, Monte Carlo methods (MCMC) 

(McCulloh, 2001; Brown 2006). 

Maximum Likelihood Estimator Method (MLE) 
It is a method to estimate the parameters and it was developed for the first time by Fisher (1922) and it is 

used for many years.  

This method is used as basis method for big cases of sample of hypotheses test and confidence interval in 

analysis of time series data.  
This estimation method is used in various grounds as survival analysis, regression analysis, spatial data 

analysis, variance component and etc. 

In multi-level models, we are interested in estimation of three types of parameters, fixed coefficients of 
model, matrix G and error variance matrix of model R. 

Based on equation 4, the feature of normal distribution and expected value we have: 

       (6) 

 
          (7) 

Thus, Y is defined as: 

          (8) 

Let  is the vector of covariance variance parameters as found in . In other words,  includes 

q(q+1)/2 different elements in matrix G and all  parameters. 

By placement of values achieved in equations 6, 7 and its placing in normal distribution we have: 

.   (9) 

By logarithm and derivation of equation , by repetitive methods or Newton–Raphson method, 

we can use in solution of maximum likelihood equations in which most of statistical software are 

calculated. Thus,  is achieved as: (Wulu, 1999; Myers, 2002; Verbeke, 2000). 

                            (10) 
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Residual Maximum Likelihood (REML) Method 

This method was raised for the first time by Thomposon (1962) and was explained by Peterson and 

Thompson (1974). By explanation of this method, Y should have a normal multi-variate distribution 
(Jiang, 2007). 

Estimation of Residual Variance in Linear Regression 

As a second example, we now consider the estimation of the residual variance in linear regrestion 

model  where Y is an N dimensional vector, and with X a matrix with known 

covariate value. It is assumed that all elements in  are independently normally distributed with mean 

zero and variance . The MLE for  equals  

      (11) 

Which can easily be shown to be biased downward by a factor (N-p)/N. 

can be estimated using a set of error contrasts    where A is now any  matrix with 

 Linearly independent columns orthogonal to the columns of the design matrix X. We then have 

that U follows a normal distribution with mean vector 0 and covariance matrix , in which  is 

again the only unknown parameter. Maximizing the corresponding likelihood with respect to  yields 

                                                                   (12) 

Which is the mean squared error, unbiased for , and classically used as estimator for the residual  

variance in linear regression analysis (see, for example, Neter et al., 1990; Seber, 1977) we again have 

that any matrix A satisfying the specified conditions leads to the same estimator for the residual variance, 

which is again called the REML estimator for  (Verbeke, 2000). 

REML Estimation for the Linear Mixed Model 

The drawback of MLE method to estimate covariance components is that this method doesn’t involve a 
part of degree of freedom lost due to the estimation of coefficients vector in estimation of covariance 

components and biased estimations are generated mostly. 

The true example is the estimation of variance of multi-variate normal distribution. Let , 

thus, ML estimation of parameter  is  in which RSS is the sum of squares of error. The 

above estimator is biased one. However, non-biased estimator  is equal to  in which P 

is the number of elements of  vector. This estimator is defined as ML estimator as a linear combination 

of observations ( ). The distribution of converted observations is not dependent upon parameter . 

A is not unique and any matrix true in  can be used for this conversion (Jiang, 2007). 

Estimation for the Linear Mixed Model 
In practice, linear mixed models often contain many fixed effects. In such cases, it may be important to 

estimate the variance components, explicitly taking into account the loss of the degrees of freedom 

involved in estimating the fixed effects. In contrast to the simple cases, an unbiased estimator for the 

vector  of variance components cannot be obtained from appropriately transforming the ML estimator as 

suggested from the analytic calculation of its bias. However, the error contrasts approach can still be 

applied as follow. We first combine all N subject-specific regression models to one model: 

                                                                                                                          (13) 

where the vectors Y,  and , and the matrix X are obtained from stacking the vectors , underneath each 

other, and where Z is the block-diagonal matrix with block on the main diagonal and zeroes elsewhere. 

The dimension of Y equals  and will be denoted by n. 

The marginal distribution for Y is normal with mean vector  and with covariance matrix  equal to 

the block-diagonal matrix with blocks  on the main diagonal and zeros elsewhere. The REML estimator 
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for the variance components  is now obtained from maximizing  the likelihood function of a set of error 

contrasts  where A is any (n ) full-rank matrix with columns orthogonal to the columns 

of the X matrix. The vector U then follows a normal distribution with mean vector zero and covariance 

matrix  , which is not dependent on  any longer. Further, Harville (1974) has shown that the 

likelihood function of the error contrast can be written as  

                                                                                                 (14) 

 

 
Where  is given by (10). Hence, REML estimator  does not depend on error constant (i.e. the choise of 

A). 
Note that the maximum likelihood estimator for the mean of a univariate normal population and for the 

vector of regression parameters in linear regression model are independent of the residual variance . 

Finally note that the likelihood function in equals 

                                                                                     (15) 

Where C is constant not dependent on . 

Because  does not depend on  it follows that the REML estimator for  and   can also 

be found by maximizing the so-called REML likelihood function (Verbeke, 2000) 

                                                                          (16) 

Parameters Test Methods and Model Adequacy Indices 

Likelihood Ratio Test 

Log-likelihood statistics is a method to test the significance H0: β=0 regarding regression model 

parameters and this statistics is calculated by dividing likelihood function of H0 (l0) by likelihood 
function in H1 (I1) as: 

                           (17) 

 

Where and  show likelihood functions logarithm. This statistics in H0 has chi-square distribution with 

a degree of freedom (McCulloh, 2001). 

-2log(L) value is used to compare two models. The model in which  is more and it is suitable model. 

Akaike Information Criterion (AIC) 
It is a criterion to evaluate goodness of fit. This criterion is based on entropy concept and it shows that 

using a statistical model can lose information. In other words, this criterion can establish a balance 

between accuracy of model and its complexity. This criterion is prposed by HirotesogoAkaike to select 

the best statistical model (Akaike, 1974). 
Based on the data, some competing models can be ranked based on AIC value and the model has the 

lowest AIC as best. 

The output of the summary function includes the values of the Akaike Information Criterion (AIC)  
(Sakamoto et al.,  1986) and the Bayesian Information Criterion (BIC) (Schwarz, 1978), which is also 

sometimes called Schwarz’s Bayesian Criterion  (SBC). These are model comparison criteria evaluated as 

AIC = − 2 log Lik + 2n par ,                                                                                                          (18) 
BIC = − 2 log Lik + n par log(N),                                                                                                   (19) 
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where n par denotes the number of parameters in the model and N  the total number of observations used 

to fit the model. Under these definitions, “smaller is better.” That is, if we are using AIC to compare two 

or more models for the same data, we prefer the model with the lowest AIC. 
Similarly, when using BIC we prefer the model with the lowest BIC (Pinherio and Bates, 2000) 

Intra Class Correlation (ICC) 

ICC is one of the best adequacy indices and model selection in multi-level data. 
ICC is an index of correlation of intra cluster data and it is the intercluster variance ratio to total existing 

variance 

                                                                                                        (20) 

This index reports correlation degree of data. Although numerical value of this index is close to one, it 

means that multi-level modeling is a suitable model to analyze the existing data and multi-level analysis 
can present better results compared to simple regression (Luke, 2004). 

ICC value close to zero indicates that using simple regression method and multi-level analysis method has 

similar efficiency. 

To prove that why ICC is called intra-cluster correlation coefficient, simple two –level model with 
equation 16 is considered.  

                                                        (21) 

The variance of ith in cluster jth based on variance formula is as: 

                                                                                       (22) 

The covariance of ith and i’ in cluster jth based on covariance formula is as 

                                                                                                 (23) 

The correlation value of ith in cluster jth and based on correlation coefficient formula is equal to [6]: 

                                                                                                       (24) 

Simulation Algorithm  

Simulation process for random intercept model with N=80 (number of samples), J=10 (the number of 

repetitions in each sample), b0=1.7 (  in multilevel model as intercept of model) and b1=4 (  value in 

multi-level model as slope of line in model) can be considered. 

Sample n=80, J=10 is optimum sample volume in two-level model (Akhgari, 2013). 

1- Based on relation  ،  and ICC by determining ICC and one of the variances, another value is 

determined. 

 
As it can be said 

 
By considering values for ICC and ,  values are determined.  

2-Simulation of  values: The data are simulated as n times of distribution N(0,  and each time, for J 

times, these data are repeated (for each set of data,  value is considered and values  are similar for 

the data of a set of values). 

3- For simulation  as  is 16 and data of  as  of distribution N(0,  can be 

simulated. 

4- For simulation , the data as  are simulated as N(0,  distribution. 

5- Values  are simulated as followings 
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In classic case in 12 values of ICC ranging from 0.01 to 0.9 and in each ICC as 1000 times data are 

generated and each time, two regression and multi-level models by REML method are fitted on data and 

coefficients of model and  and AIC and Loglik values and R2 value of regression model are 

registered and in each fitting time , absolute value of coefficients deviation of real value of two models 

with assumption of model coefficients or  biased absolute value of effect size can be computed.  
By considering three criteria comparison models, we can compare two models in various ICCs. 

The mean values of AIC and Loglik and biased absolute value of effective size of two models are 

compared with each other. Also, average  in regression model is computed as a criterion to show the 

efficiency of regression model in each model. To compare the biasedness of effect size of two models, 

percent of growth coefficient of effect size in model change of regression to multi-level model in each 

ICC can be computed and compared. When multi-level model is better than regression, this value is 
bigger than zero and the growth of this value shows the superiority of multi-level model to regression 

model. 

The formula of effect size growth coefficient percentage in this study is as: 

                                                                        (25) 

In the results of Bayesian approach, the results of simulation by Gibbs algorithm is for random intercept 

model. The number of simulations based on 100000 times sampling with burn-in phase 50000 times. 

Then, of 50000 residual Gibbs samples, of each 50, one is selected. Thus, to estimate model parameters, 

1000 samples are available.  

The Investigation of the Results in Classic Case 
Table 4-1 shows 12 values of various ICCs ranging 0.01-0.9 with average intercept (b0) and slope (b1) 

and two criteria AIC and log likelihood in two regression and multi-level models each with 1000 times 
simulations. 

 

Table 2: The general results in classic case 
ICC Regressi

on 

model

 

Regressi

on 

model  

Regressio

n 

modelAI

C 

Regressi

on 

modelLo

glik 

 

Multi-

level 

model 

 

Multi-

level 

model 

 

Multi-

level 

model 

AIC 

Multi-

level 

model 

Loglik 

0.01 1.713487 4.000034 3570.369 -1782.25 0.981 1.713468 3.999893 3571.529 -1781.76 

0.03 1.697784 4.00227 3603.919 -1798.86 0.980 1.697829 4.002233 3601.964 -1796.98 

0.05 1.676696 3.999154 3608.99 -1801.09 0.980 1.676746 3.998981 3603.415 -1797.72 

0.055 1.737523 3.998667 3611.946 -1802.97 0.980 1.737539 3.998872 3604.535 -1798.27 

0.06 1.696821 4.003567 3621.294 -1807.66 0.979 1.696757 4.003719 3612.89 -1801.95 

0.065 1.704008 3.998016 3622.76 -1809.57 0.980 1.703984 3.998372 3609.651 -1801.82 

0.1 1.686862 4.001383 3657.287 -1824.74 0.979 1.686848 4.001221 3632.272 -1812.14 

0.2 1.725452 3.989761 3753.08 -1874.54 0.976 1.725355 3.989578 3677.012 -1834.5 

0.3 1.669395 3.998506 3856.562 -1925.78 0.973 1.669386 3.998595 3710.697 -1851.37 

0.5 1.681176 3.999091 4109.402 -2051.1 0.963 1.681264 4.000779 3752.868 -1872.42 

0.7 1.76127 4.000235 4534.57 -2264.28 0.938 1.76113 3.996224 3824.399 -1908.2 

0.9 1.664998 3.998298 5385.125 -2679.56 0.839 1.664029 3.995434 3821.926 -1959.32 

 
Table 4-2 shows the biased mean of effect size of regression model, multi-level model and biased growth 

coefficient of effect size of regression to multi-level in 12 levels of ICC. 
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Table 3: The results in classic case 2 

ICC Biasedness of effect size of 

regression model coefficients: 

 

Biased effect size of multi-level 

model coefficients: 

 

Biased growth 

coefficient of effect size 

of regression to multi-

level 

B0 B1 B0 B1 B0 B1 

0.01 0.06727812 0.01679103 0.06728266 0.016875903 -0.007% -0.503% 

0.03 0.07450571 0.0164156 0.0745417 0.0164955 -0.048% -0.484% 

0.05 0.07668905 0.01744417 0.0766934 0.01752309 -0.006% -0.450% 

0.055 0.1007628 0.01869448 0.10079871 0.01879788 -0.036% -0.550% 

0.06 0.0841757 0.01635698 0.08417861 0.01642354 -0.003% -0.405% 

0.065 0.0861131 0.01542158 0.086116747 0.01501944 -0.004% 2.677% 

0.1 0.08097108 0.01546579 0.080899377 0.01507619 0.089% 2.584% 

0.2 0.08452881 0.02517319 0.08441917 0.02400584 0.130% 4.863% 

0.3 0.14568395 0.01956844 0.145584353 0.0163644 0.068% 19.579% 

0.5 0.21035854 0.02498493 0.20975297 0.01803338 0.289% 38.548% 

0.7 0.30382888 0.02594441 0.30325008 0.016225647 0.191% 59.898% 

0.9 0.62194652 0.05217747 0.62146553 0.01470385 0.077% 254.856% 

 

Likelihood Ratio Test (Loglik) 
The changes of this parameter in various ICCs are shown in the following Table and chart. 

 
Image 1: The chart of Loglik changes in classic case-comparison with regression model 
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Table 4: Loglik difference in multi-level model with regression model 
ICC  

0.01 

 

0.03 

 

0.05 

 

0.05

5 

 

0.06 

 

0.06

5 

 

0.1 

 

0.2 

 

0.3 

 

0.5 

 

0.7 

 

0.9 

Difference 

of Loglik 

in multi-

level 
model 

with 

regression 

model 

0.49 1.88 3.37 4.71 5.72 7.75 12.61 40.04 74.41 178.69 356.08 720.24 

 

 
Image 2: The chart of Loglik difference in multi-level model compared to regression model 

 

As it was said before, Loglik parameter is a criterion for determining model superiority. Compared to the 

two models, Loglik model of big value has better fitness for data. Chart 4-2 shows the comparison of the 
value of this parameter in various ICCs and Table 4-3 shows loglik difference in multi-level model with 

regression model (Loglik multilevel-Loglik regression). Based on the results, it seems that the difference 

of this parameter between two regression models and multilevel models to ICC=0.065 is very little and 

this difference is higher later and to ICC=0.1, this difference is ignored and after ICC=0.1, this difference 
is higher. IN addition, it shows that the higher ICC, Loglik parameter is increased with mild slope to 

ICC=0.5 and then the slope gets higher and multi-level model has high efficiency compared to regression 

model. 

Akaike Information Criterion 

The changes of this parameter in various ICCs are observed in the following Table and chart. 
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Image 3: The chart of AIC changes in classic case-comparison with regression model 

 

 
Image 4: The chart of AIC difference in multi-level model compared to regression model-in classed 

case 

 
As it was said in 2-5-2, one of the goodness of fit criteria is Akaike information criterion or AIC and the 

model in which this feature is smaller is a good model. 
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Table 5: AIC difference in multi-level model with regression model-in classic case 

ICC 0.0

1 

0.03 0.05 0.05

5 

0.06 0.06

5 

0.1 0.2 0.3 0.5 0.7 0.9 

AIC 
difference 

of 

regression 
and multi-

level 

models 

1.2 -2.0 -5.6 -7.4 -8.4 -13.1 -25.0 -76.1 -
145.9 

-
356.5 

-710.2 -
1563.2 

 
Chart 4-4 shows this parameter in various ICCs and Table 4-4 shows AIC difference in multi-level model 

with regression model (Loglik multilevel-Loglik regression). Based on the results, it seems that the 

difference of this parameter between two models to ICC=0.065 is ignored and later this difference is more 
and after ICC=0.1, this difference is considerable. Also, it shows that the higher ICC, AIC parameter in 

regression model is increased with mild slope to ICC=0.5 and the ascending slope is increased and 

regression model has low efficiency compared to multi-level model. 

Coefficient of Determination ( ) 

As it was said before, coefficient of determination is a criterion for suitability of regression model and the 

bigger this criterion, the higher the efficiency of regression in determining the dependent variable based 
on independent variable or variables. The changes of coefficient of determination in various ICCs are 

observed in the following chart: 

 

 
Image 5: The chart of coefficient of determination changes in various ICCs in classic case 

 
As it is observed in ICCs above 0.1, coefficient of determination is reduced gradually and by increasing 

ICC, efficiency of regression model is reduced. 
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The Growth Coefficient of the Mean Effect Size of Real Coefficients 

To compute this growth coefficient (G), if we consider the second model as regression model and the first 

model as multi-level model, the mean absolute value of deviation from initial value is model coefficient 
or effect size of equation 25. 

The positive values of this growth coefficient show the increase of regression model error compared to 

multi-level model and negative values show the reduction of error of regression model compared to multi-
level model to estimate B1 value or model slope. Thus, in each value of ICC, this growth coefficient is 

calculated. 

The following chart shows the changes of this growth coefficient for line slope in two models (B1). 

 

 
Image 6: The chart of mean growth coefficient of effect size B1- in classic case 

 

Table 6: The growth coefficient of the mean absolute value of deviation from real coefficients B1 in 

classic case 

ICC  

0.01 

 

0.03 

 

0.05 

 

0.05

5 

 

0.06 

 

0.06

5 

 

0.1 

 

0.2 

 

0.3 

 

0.5 

 

0.7 

 

0.9 

The coefficient 

of mean growth 

of absolute 

value of 
deviation from 

real coefficients 

B1 

-

0.50

% 

-

0.48

% 

-

0.45

% 

-

0.55

% 

-

0.41

% 

2.68

% 

2.5

8% 

4.86

% 

19.5

8% 

38.5

5% 

59.9

0% 

254.8

6% 

 

In this chart, it is seen that in ICC higher than 0.065, average absolute value of coefficients error in 

regression model is more than multi-level model and this increase to ICC=0.1 is mild and then continues 
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with ascending slope as in high ICC values, the superiority of multi-level model in reduction of the error 

of model coefficients compared to regression model can be observed well. 

This coefficient for b0 in various ICCs is about to zero and we ignore to investigate it. (The values are in 
Table 4-1). 

The summary of comparison with the estimation of  

By considering the above items, we can say cut off point to be used in multi-level   model in random 
intercept  is with ignoring ICC=0.1  

Applied Example 

In this applied example, a sample including 81 files of children is selected of health center of south of 

Tehran as randomly. Of each file at seven different ages, the child below 2 years, ages and weights are 
registered. The aim is the investigation of the relationship between weights and age of children. 

 

Table 7: The summary of data 

Weight  Age   

1.16 0 Min 

16.1 24 Max 

7.908 7.76 Mean 

 

Growth chart of weight index for children at various ages below two years 

 

 
Image 7: The weight chart to growth time (age) 
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Image 8: Weight chart to square growth time (age) 

 

Histogram and weight morality chart 

 
Image 9: Histogram and qq-plot to investigate normality of weight data 
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Based on these two charts, we can say the data distribution follows normal distribution a little.  

Regression Model of Weight to Age 

 

Table 8: The output of regression model fitting  

Weight~sqrt(age) model 

Generalized least squares fit by REML Method 

   Coefficients: 
p-value Std. Error value  

0 0.0891512 3.107177 Intercept 

0 0.03195432 1.931126 Sqrt(age) 

 

loglik BIC AIC R
2
 

-974.7945 1969.088 1955.589 0.8 

 

Regression model:  

Fitting of random intercept model (model estimation method of REML method). 

 

Table 9: Output of multi-level model fitting 

  
0.6089281 0.8418146 

 

Weight~sqrt(age) model 

Linear mixed-effects model fit by REML Method 

p-value Std. Error value Coefficients: 

0 0.10735478 3.123677 Intercept 

0 0.01896518 1.925886 Sqrt(age) 

 

Loglik BIC AIC 

-733.0711 1492.141 1474.142 

 
Multi-level model 

 
By comparison of AIC and Loglik we have: 
 

Table 10: The comparison of AIC and Loglik of multi-level and regression models 

Multi-level model Regression model  

1955.589 1955.589 AIC 
-733.071 -974.795 Loglik 

 

 value is 0.370793 (0.608928 squared) and  is 0.708652 and of ICC, 0.785 is obtained. 

Based on Table, AIC of multi-level is less and Loglik is higher than regression model showing that multi-

level model acts better than regression model. 

Based on simulation results, this is supported by observation of ICC value (ICC =0.785 is higher than 

0.1). 
Based on the results, multi-level model is suitable for these data. 

 

CONCLUSION 
Based on the results, we can say based on ICC=0.1, we can observe the improvement of multi-level 

performance compared to regression model in random intercept and we can consider ICC cut off point in 
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using multi-level model in random intercept by REML method compared to regression model by ignoring 

0.1. 
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