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ABSTRACT 

In mathematics and in particular in graph theory, a rooted graph is a graph in which one vertex has been 

distinguished as the root. Also, for an edge e=ab of a graph G, let 
G

abW  be the set of vertices closer to a 

than to b. That is 

 }),(),(|)( budaudGVuW G

ab   

We call a graph G distance-balanced, if |||| G

ba

G

ab WW   holds for any edge ab of G. In this paper, some 

properties of rooted and distance balanced graphs about new version of PI index is computed. 
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INTRODUCTION 

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological 

index also known as a connectivity index is a type of a molecular descriptor that is calculated based on 
the molecular graph of a chemical compound (Hendrik et al., 2002). Topological indices are numerical 

parameters of a graph which characterize its topology and are usually graph invariant. Topological indices 

are used for example in the development of quantitative structure-activity relationships (QSARs) in which 
the biological activity or other properties of molecules are correlated with their chemical structure (Hall et 

al., 1976). 

Topological descriptors are derived from hydrogen-suppressed molecular graphs, in which the atoms are 

represented by vertices and the bonds by edges. The connections between the atoms can be described by 
various types of topological matrices (e.g., distance or adjacency matrices), which can be mathematically 

manipulated so as to derive a single number, usually known as graph invariant, graph-theoretical index or 

topological index (González-Díaz et al., 2007; González-Díaz et al., 2008). As a result, the topological 
index can be defined as two-dimensional descriptors that can be easily calculated from the molecular 

graphs, and do not depend on the way the graph is depicted or labeled and no need of energy 

minimization of the chemical structure. 
The simplest topological indices do not recognize double bonds and atom types (C, N, O, etc.) and ignore 

hydrogen atoms ("hydrogen suppressed") and defined for connected undirected molecular graphs only 

(King, 1983). More sophisticated topological indices also take into account the hybridization state of each 

of the atoms contained in the molecule. Hundreds of indices were introduced. The Hosoya index is the 
first topological index recognized in chemical graph theory, and it is often referred to as the topological 

index (Hosoya, 1971). Other examples include the Wiener index, Randić’s molecular connectivity index, 

Balaban’s J index (Katritzky et al., 2002), and the TAU descriptors (Pal et al., 1988; Pal et al., 1989). The 
extended topochemical atom (ETA) indices have been developed based on refinement of TAU descriptors 

(Roy et al., 2003). 

Global and Local Indices 

Wiener index are global (integral) indices to describe entire molecule, Bonchev and Polansky introduced 
local (differential) index for every atom in a molecule (Hosoya, 1971). Since then Wiener index is widely 

used in QSPR/QSAR/QSTR studies. This index is defined as below: 

W(G)=Σd(i, j),             (1) 
where d(i, j) is the size of minimum  length of  paths  between vertices i and j. 

The Wiener index W = W(G) was first defined for a tree G = T by the following 

expression: 
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W= W(T)= (1/2)Σd(i, j),          (2) 

where the summation going over all pairs (i, j) of vertices i, j∈V (G), or by 

W = W (T) = Σn(i(e)) n(j(e)),          (3) 
where the summation going over all edges e = (i, j)   E (G). 

The Szeged index Sz (G) of graph G is defined (see also equations (1), (2)) by 

Sz(G) = Σn(i(e)) n(j(e)).           (4) 
The right-hand side of eq. (4), although formally identical to the right-hand side of 

eq. (3), differs in the interpretation of ni(e) and n(j(e)). In the former case, eq. (3), they are the number of 

vertices of G lying on two sides of the edge e. While in case of eq. (4), if we define an edge e = uv, then 

ni(e)  is the number of vertices closer to u than v, and n(j(e)) is the number of vertices closer to v than u; 
vertices equidistant to u and v are not counted.  For more details please see (Diudea et al., 2006). 

Since Sz and W indices of acyclic graphs coincide, Khadikar to remove this lacuna, 

proposed another index in 2000, which he named Padmakar-Ivan index and abbreviated as PI (Khadikar 
et al., 2000; Khadikar et al., 2001). It is worth mentioning that Padmakar is the first name of Khadikar, 

while Ivan is the first name of Gutman. Khadikar conceived this index while attempting simultaneous 

estimation of Wiener and Szeged indices of benzenoids using elementary cut method. The Padmakar-Ivan 

index (abbreviated as PI index) of a molecular graph is defined by the following expression: 

PI = PI (G) = Σ e∈E(G) [n
 
eu(e | G) + n ev(e | G)]. 

Here, we define edge of G connecting the vertices u and v, as e = uv   E (G). The 

quantities neu and nev are the number of edges closer to u and v respectively. In calculating PI index edges 
equidistance from both end of the edge uv are not counted. The PI index of acyclic and cyclic graphs 

differs.  

 After the PI index, Hasani et al., (2010) difined the new index similar to the vertex version of PI index 
abbreviated CO-PI index (Hasani et al., 2010). This index is defined as: 

 

Through this paper, some properties about CO-PI index of molecular graphs is included. Our notation is 

standard and is similar to Handbook of Molecular Descriptors (Hendrik et al., 2002).    

 

RESULTS AND DISCUSSION 

In this section we will use some definitions and theorem from Hall et al., (1976) to calculate the Co- PI 
index of graphs. 

Definition. Rooted graph: In mathematics and in particular in graph theory, a rooted graph is a graph in 

which one vertex has been distinguished as the root.  

Both directed and undirected versions of rooted graphs have been studied, and there are also variant 
definitions that allow multiple roots.  

Definition. Distance-balanced graph: For an edge e= ab of a graph G, let 
G

abW  be the set of vertices 

closer to a than to b. That is 

 }),(),(|)( budaudGVuW G

ab   

We call a graph G distance-balanced, if |||| G

ba

G

ab WW   holds for any edge ab of G. 

Definition. Suppose that G and H are graphs with disjoint vertex sets. Following Doslic (Doslic, (2008)), 

for given vertices y   V (G) and z   V (H) a splice of G and H by vertices y and z, (G · H)(y; z), is 

defined by identifying the vertices y and z in the union of G and H. Similarly, a link of G and H by 

vertices y and z is defined as the graph (G   H)(y; z) obtained by joining y and z by an edge in the union 

of these graphs. 
In the following proposition, the Co-PI index for rooted and distance balanced graph (G · H)(a; b)  is 

computed.  
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Proposition. Assume that G and H are rooted graphs with respect to the rooted vertices of a and b, 

respectively. Also (G · H)(a; b) is distance-balanced. Then the Co-PI index of graphs G and H are equal 

to: 
Co-PI (G) = (| V(H)| -1). |A| and Co-PI (H) = ( | V(G)| -1). |B|, where, for each arbitrary e = uv   E(G) 

and f = xy   E(H), A, B are equal to  this following sets:  

A = {e = uv   (G · H)(a; b)|d(v; a) < d(u; a)}; 
B = {e = uv   (G · H)(a; b)|d(v; r) = d(u; r)}: 

Proof . Suppose that r = a = b. We partition edges of (G·H)(a; b) into the following two subsets: 

A = {e = uv   E(G:H)|d(v; r) < d(u; r)}; 

B = {e = uv   E(G:H)|d(v; r) = d(u; r)}. 
Since G and H are rooted graphs with respect to the rooted vertices of a and b, respectively, and (G · 

H)(a; b) is distance-balanced, thus by Tavakoli,  Proposition 2.3 (Tavakoli et al., 2013), it is obvious that: 
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Therefore,   by diofinition of Co-PI index, we have, Co-PI index of graphs G and H are equal to: 

Co-PI (G) = (| V(H)| -1). |A| and Co-PI (H) = ( | V(G)| -1). |B|. 
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