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ABSTRACT 
Optimum design of structures subject to earthquake requires that the time history analysis to be performed 
many times. This makes the optimal design process inefficient. In this study, in order to reduce the overall 
time of optimisation two strategies are adopted. In the first strategy, an intelligent neural system (INS) 
consisting of competitive (CNN) and radial basis function (RBF) neural networks is used to predict the 
responses of structures subject to earthquake. In the second one, an improved genetic algorithm (GA) is 
employed to achieve optimisation task. Computational performance of the hybrid INS-GA method is 
demonstrated by two numerical examples.  
     
Keywords: Optimum Design, Earthquake, Evolutionary Algorithm, Competitive, Radial Basis Function, 
Intelligent Neural System  

 

INTRODUCTION 
This paper is an updated and revised version of the conference paper (Salajegheh et al., 2006). In the 
present paper further enhancements are accomplished on presenting of the materials. In order to clarity 
some new sections and figures are added to the paper. Also, a more efficient evaluation metric (Jiang et 
al., 2006) is included to assess performance generality of neural networks. All the neural network models 
are retrained and the neural based optimisation processes are re-achieved and the obtained results are 
reconfirmed. Finally, a deeper analysis of the results is included.    
Structural optimisation requires that the structural analysis to be performed many times for the specified 
external loads. This makes the optimal design process inefficient, especially when a time history analysis 
is considered. This difficulty will be resonated when the employed optimisation method has the stochastic 
nature such as evolutionary algorithms. A few researchers (Jiang et al., 2006; Lagaros et al., 2006; Zou 
and Chan, 2005; Kocer and Arora, 2002) employed traditional and evolutionary search techniques to 
optimal design of structures subject to response spectrum and earthquake loadings. Salajegheh and 
Heidari (2005) incorporated wavelet neural network techniques in the optimisation process to predict 
structural time history responses. In the recent years, neural networks are broadly utilized in civil and 
structural engineering applications (Adeli and Jiang, 2006; Pu and Mesbahi, 2006; Zhang et al., 2006; 
Jung and Ghabousi et al., 2006; Fang et al., 2005). In the case of neural networks application to predict 
structural time history responses it is probable that a single neural network model cannot provide 
sufficient performance generality. In order to attain proper performance generality an intelligent neural 
system (INS) is proposed by Gholizadeh and Salajegheh (2006). The INS is a combination of competitive 
(CNN) and radial basis function (RBF) neural networks.      
In this study, the INS is used to predict the time history responses of the structures subject to earthquake. 
By implementing this approximation the exact dynamic analysis of the structure is not necessary in the 
optimisation process. Training of INS is implemented in two phases. In the first phase, the input and 
target spaces are classified as the similar data is located in some subspaces. The similarity criterion may 
be taken as natural periods of the structures. In fact, the structures with similar natural periods appear the 
same patterns for time history responses. The classification task is performed by a CNN. The CNN can 
learn to detect regularities and correlations in its input and adapt its future responses to that input 
accordingly. The neurons of CNN learn to recognize groups of similar input vectors. In the second phase, 
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a distinct RBF is trained for each subspace using its data. Therefore, INS consists of an intelligent 
classifying unit and a set of RBF networks. Illustrative examples demonstrate the computational 
advantages of INS. In all the examples, the input space includes the natural periods of the structures and 
target space consists of the corresponding time history responses of structures. In order to provide training 
data and to design the neural networks ANSYS (2004) and MATLAB (2006) are employed, respectively. 
The evolutionary algorithm used in this study is virtual sub population (VSP) method (Salajegheh and 
Gholizadeh, 2005). In the present work, a 10-bar steel truss and a 25-bar space tower subjected to the El 
Centro (S-E 1940) and Naghan (1977 Iran) earthquakes, respectively are considered as the numerical 
examples. The numerical results reveal efficiency of the proposed method for finding the optimal design 
of structures subjected to the earthquakes, spending low computer effort.  
Formulation of the Optimal Design Problem 

In sizing optimisation problems the aim is usually to minimize the weight of the structure, under some 
constraints on stress and displacements. The design variables are considered as cross-sectional properties 
of the structural elements. Due to the practical demands the cross-sections are selected from the sections 
available in the manufacture catalogues. Therefore, the design variables are discrete.  
A discrete structural optimisation problem can be formulated in the following form: 

                               Minimize     )(XF  

                               Subject to     0)( Xgi             mi ,1,2,                                         (1) 

                                                    
d

j RX                nj ,1,2,                                                   

where F(X) represents objective function g(X) is the behavioural constraint, m and n are the number of 
constraints and design variables, respectively. A given set of discrete values is expressed by R

d
 and design 

variables Xj can take values only from this set.      
In the optimal design of structures the constraints are the member stresses, nodal displacements, or 
frequencies. The stress constraints can be written as 
                                               │S│≤│Sa│                                                                    (2) 
where S is the maximum stress in each element group for all loading cases, Sa is the allowable stress.  
Similarly, the displacement constraints can be written as 
│D│≤│Da│                                                                              (3) 
where D is the displacement at a certain node and Da is the limiting value of the displacement at a certain 
node, or the maximum nodal displacement.  
Structural Analysis for Earthquake Loading 
The dynamic analysis considered here is the time history method. The procedure involves a step-by-step 
solution through a time domain to yield the dynamic response of a structure to a given earthquake. The 
equations of equilibrium for a finite element system subjected to the earthquake may be written in the 
usual form: 

                             )(}]{[)}(]{[)}(]{[)}(]{[ tUItUtUtU g
 MKCM                             (4) 

where [M], [C] and [K] are the mass, damping and stiffness matrices; )},({ tU )}({ tU ,  

)}({ tU and {I} are the accelerations, velocities, displacements and unit vector (with all elements equal to 

1), respectively. The ground acceleration is expressed by )(tU g
 . 

For analysis of the structures subjected to earthquake loading, ANSYS computer program is used. The 
theory and solution procedures are based on the finite-element formulation of the displacement method 
with the nodal displacements as the unknown variables. It uses a step-by-step implicit numerical 
integration procedure based on Newmark’s method to solve the resulting equations. 
Dynamic Constraint Treatment 
All of the stress and displacement constraints are time dependent. These constraints need to be imposed at 
each point in the desired time interval. The consideration of all the constraints requires an enormous 
amount of computational effort and, therefore, treatment with a vast number of time history responses is a 
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challenging problem for most numerical optimisation algorithms (Zou and Chan, 2005). Various 
numerical techniques exist for treating such time-dependent constraints (Arora, 1999). The basic idea of 
these methods is to eliminate somehow the time parameter from the optimisation problem. In other words, 
a time-dependent problem is transformed into a time-independent one. In the present study, the 
conventional method (Arora, 1999) is employed. The conventional method is quite simple and convenient 
to implement where the time interval is divided into n subintervals and the time-dependent constraints are 
imposed at each time grid point. Let 
the ith time-dependent constraint (stress or displacement) be written as: 

                                                  0),( tXgi
,  Tt 0                                                       (5) 

where T is time interval over which the constraints need to be imposed.  
Because the total time interval is divided into n subintervals, the constraint (5) is replaced by the 
constraints at the n+1 time grid points as: 

                                                  0),( ji tXg ,  nj ,0,1,                                               (6) 

The constraint function gi(X,t) can be evaluated at each time grid point after the structure has been 
analyzed and stresses and displacements have been evaluated at each time point. If fewer grid points are 
used, the time-dependent constraints may be violated between the grid points. Use of a finer grid can 
capture these points. 
Optimisation Method 

There are two major steps in computer implementation of the optimal design process: the analysis step 
and the optimisation step. As previously mentioned, the time history analysis is performed using ANSYS. 
The optimisation method employed here is genetic algorithm (GA). GA has been quite popular and has 
been applied to a variety of engineering problems (Mathias et al., 2006; Govindaraj and Ramasamy, 
2005; Gazonas et al., 2006; Hwang and He, 2006; Madeira et al., 2005; Togan and Daloglu, 2006). The 
stochastic nature of GA makes the convergence of the method slow. Specially, employing GA to optimal 
design of structures with many degrees of freedom requires time consuming cycles. In this paper, to 
reduce the computational burden of the optimisation process the VSP method is employed. As shown in 
(Salajegheh and Gholizadeh, 2005) the computational work by VSP is less than that of the standard GA.  
Despite utilizing of the VSP to search the optimum design, the computational burden of the process due 
to implementing the time history analysis is still high. Therefore, using neural networks to reduce the 
computer effort can be very effective.    

 
Figure 1: Receptive field of the RBF neuron with two inputs 

 
Neural Networks 
Neural networks have recently emerged as a powerful tool that may be widely used to replace time 
consuming procedures in many scientific and engineering applications. The interest shown to neural 
networks is mainly due to their ability to process external data and information based on past experiences.  
As in the present study the combination of CNN and RBF is employed to predict the time history 
response of structures, the two neural network models are focused in the next sections. 
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Radial Basis Function Neural Network (RBF) 
RBF is widely used in the field of structural engineering due to their fast training, generality and 
simplicity. The hidden layer consists of RBF neurons with Gaussian activation functions. The outputs of 
RBF neurons have significant responses to the inputs only over a range of values of inputs called the 
receptive field. Receptive field of the simplified single RBF neuron with two inputs is shown in Figure 1. 
During the training, the σ value of RBF neurons is such determined as the neurons could properly cover 
the input space.  
The numerical results of many engineering applications (Rafiq et al., 2001; Zhang and Zhang, 2004; 
Deng, 2006; Roy and Ganguli, 2006) indicate that RBF networks are very good tools for interpolating and 
their training is very fast.  
Competitive Neural Network (CNN) 
Some applications need to group data that may, or may not be, clearly definable.  
CNN can learn to detect regularities and correlations in their input and adapt their future responses to that 
input accordingly. The neurons of CNN learn to recognize groups of similar input vectors. A CNN 
automatically learns to classify input vectors. If two input vectors are very similar, the CNN probably will 
put them in the same class. A key difference between this network and many other networks is that the 
CNN learns without supervision.  
Intelligent Neural System (INS) 

In a single RBF all hidden layer neurons have equal σ. In other words, by employing a single RBF the 
input space is covered by the RBF neurons which have equal radius of receptive field. A simple two 
dimensional schematic example is shown in Fig. 2a. As shown in this Figure, some parts of the input 
space are not properly covered by the RBF neurons. Therefore, performance generality of the RBF 
network over these parts of the input space is low. In order to improve performance generality of the RBF 
network, more RBF neurons with smaller σ may be assigned to the hidden layer. In this case, as shown in 
Figure 2b, the input space is smoothly covered by the RBF neurons.  
 

 
(a) 

 
(b) 

 

Figure 2: (a) Input space covering by RBF neurons of a single network with large σ  

                (b) Input space covering by RBF neurons of a single network with small σ 
 
It should be noted that, due to employing many RBF neurons the computational burden of the network 
training is high.  
In order to attain the appropriate performance generality spending low computer effort an intelligent 
neural system (INS) is employed. Details of INS training are summarized as follows:  
In the beginning, the generated input-target training pairs are classified based on a specific criterion. In 
other words, the input and target spaces are divided into some subspaces so that the data located in each 
subspace have the same properties. Classification of input space is implemented by using a CNN. Now it 
is possible to train an RBF network for each subspace using its training data. By involving the mentioned 
strategy, the single RBF network trained to cover all the input space is substituted by a set of RBF 
networks as each of them is trained to cover one specific part of the classified input space.  A simple 
scheme of INS is shown in Figure 3. Further information about INS can be found in (Fang et al., 2005). 
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Figure 3: Scheme of the intelligent neural system (INS) 
 
Error Estimation 

In order to determine the error between exact and approximate results, the relative root 
mean squared error (rrmse) is calculated. A value closer to 0 indicates a better accuracy.  
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where, Ei and Ai are the ith component of the exact and approximate vectors, respectively. The vectors 
dimension is expressed by d.  
To measure how successful fitting is achieved between exact and approximate time history responses, the 
rsquare statistic measurement is employed. A value closer to 1 indicates a better fit.   
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where, E  is the mean of exact vectors component.  
Approximation of time History Responses By INS  
The input space consists of some higher natural periods of the selected structures and the corresponding 
time history responses of nodal displacements and element internal stresses against earthquake are 
considered as the target space components. As the first step in training of the INS, a CNN is trained to 
classify the input space based on the natural periods. Then a distinct RBF network is trained to 
approximate the time history responses of structures located in each subspaces using its assigned data. 
Figure 4 gives an overview of the training process of INS.  
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Figure 4: Flowchart of INS training 

 
Main Steps of Optimisation Process By VSP Using INS  

The fundamental steps in the optimisation process by VSP using INS for earthquake loading are as 
follows: 
(a) Selecting some parent vectors from the design variables space.  
(b) Evaluating the time history responses of the structure employing trained INS.  
(c) Evaluating the objective function.  
(d) Checking the constraints at grid points for feasibility of parent vectors. 
(e) Generating offspring vectors using selection, crossover, mutation and reproduction operators.  
(f) Predicting the structural time history responses for the offspring population using trained INS. 
(g) Evaluating the objective function.  
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(h) Checking the constraints at grid points; if satisfied continue, else change the vector and go to step 
(f). 
(i) Checking convergence; if satisfied stop, else go to step (e). 
(j) Selecting the majority parent vectors from the previous solut ion and some random design variables 
as a VSP. 
(k) Repeating steps (e) to (k) until the proper solution is met. 
As the size of populations in VSP is small the method is rapidly converged. It can be observed that during 
the optimisation, the dynamic analysis of the structures is not needed. In fact, the necessary responses are 
found by the trained INS. 
Numerical Examples  

Two illustrative examples are optimised for minimum weight subject to the El Centro (S-E 1940) and 
Naghan (1977 Iran) earthquakes, respectively. The earthquakes are shown in Figure 5. The time of 
optimisation is computed in clock time by a personal Pentium IV 3000MHz. The earthquake records are 
applied in x direction. Young’s modulus is 2.1×10

11
 N/m

2
, mass density is 7850 kg/m

3
. Cross sections of 

the members are selected from the pipe, with the ratio of radius to thickness less than 50, sections 
available in European profile list.  
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Figure 5: (a) The El Centro (S-E 1940) earthquake records 

             (b) The Naghan (1977 Iran) earthquake record 
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The optimisation is carried out by the following methods: 
(a) GA using exact analysis. 
(b) GA using approximate analysis by a single RBF network. 
(c) GA using approximate analysis by INS. 
(d) VSP using exact analysis. 
(e) VSP using approximate analysis by a single RBF network. 
(f) VSP using approximate analysis by INS.  
The specifications of GA and VSP are shown in Tables 1 and 2, respectively.  

 

Table 1: Specifications of GA method 

Population size 50 

Crossover method One, two and three points crossover 
Crossover rate 0.9 

Mutation rate 0.001 

Maximum generation 150 

 

Table 2: Specifications of VSP method 
Population size 30 
Crossover method One, two and three points crossover 
Crossover rate 0.9 
Mutation rate 0.001 
Maximum generation 30 
Example 1: 10 - Bar Steel Truss 
 
The 10-bar steel truss is shown in Fig. 6. The truss is subjected to the El Centro earthquake records. Span 
in x direction and height of the truss is 3 m and 6 m, respectively. The mass of 5000 kg is lumped at each 
free node. Due to simplicity and practical demands, the truss members are divided into 6 groups based on 
cross-sections, shown in Table 3.  

 
Figure 6: 10-bar steel truss 
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Table 3: Groups of the 10-bar steel truss members 

Group 1 2 3 4 5 6 

Members 1 2 3 4 
7 

8 

9 

10 

 
In order to practical demands, 8 types of cross sections are considered for the truss elements which are 
displayed in Table 4. 
 

Table 4: Available pipe profiles 

No. Area (10
-4

 m
2
) 

1 

2 

3 

4 

5 

6 

7 

8 

12.5 

13.7 

17.2 

25.1 

27.2 

31.1 

50.0 

52.7 

 
Because of the zero internal stresses of elements 5 and 6 under the earthquake excitation, a minimum 
cross sectional area of 0.51×10

-4
 m

2
 is assigned to them.  

As a single constraint, the horizontal displacement at joint 6 is considered to be less than 0.05 m in the 
earthquake duration.  

Constraints are checked at 2688 time grid point whit the time interval of 0.02 s. To train and to test the 
parallel RBF networks of INS, the total number of 244 structures is generated.  

From which 204 samples are used for training and 40 ones are employed for test ing the networks 
performance generality. The spending time in this stage is 152 minutes. In this example INS contains five 
parallel RBF networks with 30, 42, 39, 40 and 53 RBF neurons. The results of performance generality 
assessing of the RBF networks are displayed in Table 5.  

 
Table 5: Average of rrmse and rsquare of the five data classes  

Class 1 2 3 4 5 

Average of rrmse 0.0422 0.0571 0.0659 0.0473 0.0608 

Average of rsquare 0.9902 0.9892 0.9806 0.9893 0.9867 

 
As shown in Table 5 all the RBF networks have good performance generality. Results of optimisation of 
the 10-bar truss are shown in Table 6.  
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Table 6: Optimum design of the 10-bar steel truss by various methods 

No. 

Optimum Areas (10
-4
 m

2
) 

GA VSP 

Exact RBF INS Exact RBF INS 
1 52.70 50.00 31.10 50.00 50.00 31.10 
2 13.70 12.50 13.70 12.50 12.50 12.50 
3 17.20 27.20 52.70 27.20 50.00 27.20 
4 27.20 12.50 12.50 12.50 12.50 12.50 
5 0.51 0.51 0.51 0.51 0.51 0.51 
6 0.51 0.51 0.51 0.51 0.51 0.51 
7 12.50 12.50 12.50 13.70 13.70 17.20 
8 12.50 12.50 12.50 13.70 13.70 17.20 
9 27.20 31.10 27.20 25.10 17.20 25.10 
10 27.20 31.10 27.20 25.10 17.20 25.10 

Weight (N) 5277.9 5335.2 5259.1 5015.5 5026.2 4803.5 

Generations 92 64 78 105 93 88 

Analyses  4600 3200 3900 3150 2790 2640 

Time (min) 1075 0.5 0.7 735 1.1 1.0 

rrmse - 0.1427 0.0714 - 0.1263 0.0629 

rsquare - 0.8954 0.9673 - 0.9125 0.9871 

 

 
Figure 7: 25-bar space tower 

 
As displayed in Table 6, the optimum designs obtained by VSP are better than that of obtained by GA in 
terms of structural weight, computational work and approximation errors. Also, it can be observed that by 
employing neural networks to predict the time history responses the overall time of optimisation, 
including training time, is 0.2 times of exact optimisation. In the case of both the GA and VSP, the 
solution obtained by using INS is better than that of obtained by employing RBF in terms of rrmse and 
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rsquare. Finally, the optimum design obtained by VSP using INS is the best solution in comparison with 
the other ones.  
Example 2: 25 - Bar Steel Space Tower 
The 25-bar steel space tower with the height of 5 m is shown in Fig. 7. The positions of the tower 
elements are given in Table 7. The tower is subjected to the Naghan earthquake. The mass of 2000 kg is 
lumped at each free node. In order to practical demands, 8 types of cross sections are considered for the 
elements which are displayed in Table 8. In all the elements, allowable stress is 1.1×10

8
 N/m

2
. The 

horizontal displacement of joint 1 is limited to 0.007 m. constraints are checked at 250 grid points with 
the time interval of 0.02 s.  

 

Table 7: Position of the 25-bar space truss elements 

Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Start joint 
End joint 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

2 
3 

2 
4 

2 
5 

2 
6 

3 
4 

4 
5 

5 
6 

3 
6 

Element No. 14 15 16 17 18 19 20 21 22 23 24 25  

Start joint 

End joint 

3 
7 

3 
8 

3 
10 

4 
7 

4 
8 

4 
9 

5 
8 

5 
9 

5 
10 

6 
7 

6 
10 

6 
9 

 
Table 8: Available pipe profiles 

No. Area (10
-4

 m
2
) 

1 
2 
3 
4 
5 
6 
7 
8 

15.2 
26.7 
37.1 
50.0 
57.7 
61.2 
73.7 
82.6 

 
Because of the zero internal stresses of elements 1, 10 and 12 under the earthquake excitation, a minimum 
cross sectional area of 0.51×10

-4
 m

2
 is assigned to them. Due to the practical demands the tower elements 

are grouped into 7 different types as shown in Table 9. 
 

Table 9: Available pipe profiles 

Group Elements 

1 
2 
3 
4 
5 
6 
7 

11; 13 
2; 4; 6; 8 
3; 5; 7; 9 
15; 17; 22; 25 
16; 19; 20; 23 
14; 18; 21; 24 
1; 10; 12 

 
To train and to test the parallel RBF networks of INS, a total number of 449 structures are generated. 
From which 360 and 89 samples are used for training and testing the performance generality of the 
networks, respectively. The spending time in this stage is 265 minutes. In this example, the INS includes 
five RBF networks with 71, 64, 75, 81 and 69 RBF neurons. The results of performance generality 
assessing of the RBF networks are displayed in Table 10.  
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Table 10: Average of rrmse and rsquare of the five data classes 

Class 1 2 3 4 5 

Average of rrmse 0.0961 0.1187 0.0906 0.1044 0.1208 

Average of rsquare 0.9560 0.9385 0.9411 0.9436 0.9301 

 
The results displayed in Table 5 indicate that all the RBF networks have good performance generality. 
Results of optimisation of the 25-bar space tower by standard GA and VSP methods using exact and 
approximate time history responses are shown in Table 11. As observed in this table, the optimum 
designs obtained by GA and VSP employing neural networks require much less time comparing with 
those of obtained by exact analysis.  
 
Table 11: Optimum design of the 25-bar space tower by various methods  

Element No. 

Optimum areas (10
-4

 m
2
) 

GA VSP 

Exact RBF INS Exact RBF INS 
1 0.51 0.51 0.51 0.51 0.51 0.51 
2 37.10 50.00 37.10 37.10 50.00 50.00 
3 61.20 57.70 37.10 50.00 37.10 37.10 
4 37.10 50.00 37.10 37.10 50.00 50.00 
5 61.20 57.70 37.10 50.00 37.10 37.10 
6 37.10 50.00 37.10 37.10 50.00 50.00 
7 61.20 57.70 37.10 50.00 37.10 37.10 
8 37.10 50.00 37.10 37.10 50.00 50.00 
9 61.20 57.70 37.10 50.00 37.10 37.10 
10 0.51 0.51 0.51 0.51 0.51 0.51 
11 15.20 15.20 26.70 26.70 15.20 26.70 
12 0.51 0.51 0.51 0.51 0.51 0.51 
13 15.20 15.20 26.70 26.70 15.20 26.70 
14 61.20 61.20 57.70 61.20 57.70 57.70 
15 50.00 50.00 50.00 50.00 37.10 37.10 
16 26.70 37.10 26.70 26.70 37.10 26.70 
17 50.00 50.00 50.00 50.00 37.10 37.10 
18 61.20 61.20 57.70 61.20 57.70 57.70 
19 26.70 37.10 26.70 26.70 37.10 26.70 
20 26.70 37.10 26.70 26.70 37.10 26.70 
21 61.20 61.20 57.70 61.20 57.70 57.70 
22 50.00 50.00 50.00 50.00 37.10 37.10 
23 26.70 37.10 26.70 26.70 37.10 26.70 
24 61.20 61.20 57.70 61.20 57.70 57.70 
25 50.00 50.00 50.00 50.00 37.10 37.10 

Weight (N) 25062.0 27270.0 22819.0 24359.0 23366.0 22411.0 

Generations 74 50 58 63 70 62 

Analyses 3700 2500 2900 1890 2100 1860 

Time (min) 2158 1.5 1.8 1103 1.4 1.2 
Avg. rrmse - 0.1903 0.1364 - 0.1736 0.1121 

Avg. rsquare - 0.8444 0.9016 - 0.8691 0.9342 
 
The results displayed in Table 11 indicate that the VSP converge to better solutions in comparison with 
GA. Incorporating neural networks in the optimisation process reduce the time of optimisation, 



Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online) 

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2014/04/jls.htm 

2014 Vol. 4 (S4), pp. 3295-3308/Hosseinpoor and Mikaili  

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  3307 

 

significantly. In this case the time of optimisation including training time, is 0.2 times of exact 
optimisation. Also, it is obvious that performance generality of INS is better than that of the single RBF. 
Finally, the optimum design obtained by VSP using INS is the best solution in comparison with the other 
ones. 
Conclusion 

In this study, an efficient optimisation procedure has been developed for the optimal design of structures 
subject to earthquake using discrete design variables. In order to achieve this, a combination of the 
evolutionary algorithm and neural networks has been utilized. The employed evolutionary algorithm is 
virtual sub population (VSP) method. The VSP method has eliminated the shortcomings of the standard 
GA such as trapping into local optima and much computational effort in the phase of computer 
implementation. Moreover, performing the structural optimisation using the exact time history analysis 
imposes disproportionate computational burden to the procedure. That is, in each design point of the 
desired earthquake the structure should be analyzed to evaluate the necessary responses. To reduce the 
computer effort an intelligent neural system (INS) is employed. In the INS, a specific combination of 
competitive and radial basis function neural networks is employed to approximate the structural time 
history responses, more accurately. In the present paper, RBF neural network and INS is employed to 
approximate the necessary time history responses of structures. The numerical results of testing the 
networks performance generality, demonstrate the computational advantages of INS comparing with that 
of the single RBF network. A simple method is employed to treat with dynamic constraints. In the method 
the time interval is divided into some subintervals and the constraints are imposed at each time grid 
points. The numerical results of optimisation show that in the proposed methods, the time of optimisation 
including training time is reduced to about 0.2 of the time required for exact optimisation; however, the 
errors due to approximations is small. Finally, it is demonstrated that the best solution has been attained 
by VSP method using INS.  
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