Research Article

COMPUTATION IN GENERALIZED METRIC SPACESAND QUASI-PSEUDO-METRIC PARTIAL

*Masoumeh Aghainezhadiyan¹ and Zabialah Heidarnezhad²

¹Department of Sciences, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran ²Young Researchers Club, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran *Author for Correspondence

ABSTRACT

In this paper we consider the GPQ-metric spaces which are a generalized Partial quasi-metrics and GQ-metric spaces which are a generalized quasi-metrics.

Keywords: Generalized Partial Quasi-metric; Quasi-metric; GPQ-metric; G-metric

INTRODUCTION

Partial metrics were introduced by Matthews (1992) as a generalization of metrics where self-distances are not necessarily zero, Mustafa and Sims introduced a new structure of generalized metric spaces called G-metric spaces. We introduce a generalization of a G-metric space which is also a generalization of a partial metric space.

```
Let X be a nonempty set and g_{pq}: X \times X \times X \rightarrow [0,\infty), be a function
```

- 1a) $g_{pq}(x, x, x) \le g_{pq}(x, x, y)$ whenever $x \ne y$;
- 1b) $g_{pq}(x, x, x) \le g_{pq}(x, y, y);$
- 1c) $g_{pq}(x, x, x) \le g_{pq}(y, x, x);$
- $1d) \; g_{pq} \; (x, \, x, \, x) \leq g_{pq} \, (x, \, y, \, x);$
- 2a) $g_{pq}(x, x, y) \le g_{pq}(x, y, z)$ whenever $y \ne z$;
- 2b) $g_{pq}(x, y, x) \le g_{pq}(x, z, y)$ whenever $x \ne z$;
- 2c) $g_{pq}(y, x, x) \le g_{pq}(x, y, z)$ whenever $x \ne y$, $x \ne z$;
- 2d) $g_{pq}(y, x, x) \le g_{pq}(x, z, y)$ whenever $x \ne y$, $x \ne z$;
- 2e) $g_q(x, y, y) \le g_q(z, x, y)$ whenever $x \ne z$, $x \ne y$;
- 2f) $g_q(x, y, y) \le g_q(z, y, x)$ whenever $x \ne z$, $x \ne y$;
- 3) $g_{pq}(x, y, z) \le g_{pq}(x, a, a) + g_{pq}(a, y, z) g_{pq}(a, a, a)$ whenever $x, y, z \in X$ and
- 4) x = y = z iff $(g_{pq}(x, x, x) = g_{pq}(x, y, z)$ and $g_{pq}(y, y, y) = g_{pq}(y, x, z)$
- and $g_{pq}(z, z, z) = g_{pq}(z, y, x)$ whenever $x, y, z \in X$.

Then the function g_{pq} is called a generalized partial quasi-metric and then (X, g_{pq}) is called a GPQ-metric space.

1.1. Definition

A function q: $X \times X \rightarrow [0,\infty)$ is called a quasi-metric iff (Bukatin et al., 2006; Künzi et al., 2006),

- 1) x = y iff q(x, y) = 0 = q(y, x) whenever $x, y \in X$,
- 2) $q(x, z) \le q(x, y) + q(y, z)$ whenever $x, y, z \in X$.

2. GQ-metric Spaces

2.1. Definition

Let X be a nonempty set and $g_q: X \times X \times X \to [0,\infty)$

is called a quasi-metric iff

1)
$$x = y = z$$
 iff $g_q(x, y, z) = g_q(z, y, x) = g_q(x, x, x) = g_q(y, y, y) =$

 $g_q(z, z, z) = 0$ whenever $x, y, z \in X$,

- 2a) $g_a(x, x, y) \le g_a(x, y, z)$ whenever $y \ne z$;
- 2b) $g_q(x, y, x) \le g_q(x, z, y)$ whenever $x \ne z$;
- 2c) $g_q(y, x, x) \le g_q(x, y, z)$ whenever $y \ne z$;
- 2d) $g_q(y, x, x) \le g_q(x, z, y)$ whenever $y \ne z$;
- 2e) $g_q(x, y, y) \le g_q(z, x, y)$ whenever $x \ne z$, $x \ne y$;

Research Article

2f) $g_q(x,\,y,\,y) \leq g_q(z,\,y,\,x)$ whenever $x \neq z$, $x \neq y;$

3) $g_q(x, y, z) \le g_q(x, a, a) + g_q(a, y, z)$ whenever $x, y, z, a \in X$.

Then (X, g_a) is called a GQ-metric space.

cleary every G-metric is a GQ-metric space, but every GQ-metric is not a G-metric space.

2.2. Examples

Let $X = \{a, b\}$ and $g_a: X \times X \times X \rightarrow [0, \infty)$ be defined as following:

 $g_{a}(a, a, a) = g_{a}(b, b, b) = 0;$

 $g_q(a, a, b) = g_q(a, b, a) = 1;$

 $g_a(b, a, a) = 2;$

 $g_q(a, b, b) = g_q(b, a, b) = g_q(b, b, a) = 3;$

Then (X, g_0) is a GQ-metric space, but Clearly (X, g_0) is not a G-metric space.

2.3. Examples

Let $X = [0,\infty)$ and $g_q : X \times X \times X \rightarrow [0,\infty)$ for all

 $x, y, z \in X$ be defined as following:

$$g_q(x, y, z) = \begin{cases} 0 & x = y = z, \\ max\{x, y, z\} & \text{otherwise} \end{cases}$$

Then (X, g_q) is a GQ-metric space, and a G-metric space.

3. GPQ-METRIC SPACES

3.1. Definition

A partial quasi-metric on a set X is a function pq : $X \times X \rightarrow [0,\infty)$ such that (Heckmann, 1999),

- 1a) $pq(x, x) \le pq(x, y)$ whenever $x, y \in X$.
- 1b) $pq(x, x) \le pq(y, x)$ whenever $x, y \in X$.
- 2) $pq(x, z) \le pq(x, y) + pq(y, z) pq(y, y)$ whenever $x, y, z \in X$.
- 3) x = y iff (pq(x, x) = pq(x, y) and pq(y, y) = pq(y, x)) whenever $x, y \in X$.

If pq satis_es all these conditions except possibly (1b), we shall speak

of a lopsided partial quasi-metric.

3.2. Definition

Let X be a nonempty set and $g_{pq}: X \times X \times X \rightarrow [0,\infty)$, be a function

- 1a) $g_{pq}(x, x, x) \le g_{pq}(x, x, y)$ whenever $x \ne y$;
- 1b) $g_{pq}(x, x, x) \le g_{pq}(x, y, y);$
- 1c) $g_{pq}(x, x, x) \le g_{pq}(y, x, x)$;
- 1d) $g_{pq}(x, x, x) \le g_{pq}(x, y, x);$
- 2a) $g_{pq}(x, x, y) \le g_{pq}(x, y, z)$ whenever $y \ne z$;
- 2b) $g_{pq}(x, y, x) \le g_{pq}(x, z, y)$ whenever $x \ne z$;
- 2c) $g_{pq}(y, x, x) \le g_{pq}(x, y, z)$ whenever $x \ne y$, $x \ne z$;
- 2d) $g_{pq}(y, x, x) \le g_{pq}(x, z, y)$ whenever $x \ne y$, $x \ne z$;
- 2e) $g_q(x, y, y) \le g_q(z, x, y)$ whenever $x \ne z$, $x \ne y$;
- 2f) $g_q(x, y, y) \le g_q(z, y, x)$ whenever $x \ne z$, $x \ne y$;
- 2d) $0 \le g_{pq}(y, x, x) \le g_{pq}(x, z, y)$ whenever $y \ne z$.
- 3) $g_{pq}(x, y, z) \le g_{pq}(x, a, a) + g_{pq}(a, y, z) g_{pq}(a, a, a)$ whenever $x, y, z \in X$ and
- 4) x = y = z iff $(g_{pq}(x, x, x) = g_{pq}(x, y, z)$ and $g_{pq}(y, y, y) = g_{pq}(y, x, z)$

and $g_{pq}(z, z, z) = g_{pq}(z, y, x)$) whenever $x, y, z \in X$.

Then the function g_{pq} is called a generalized partial quasi-metric and

then (X, g_{pq}) is called a GPQ-metric space.

if g_{pq} is a generalized partial quasi-metric on X satisfying

 $g_{pq}(x, y, z) = g_{pq}(z, x, y) = g_{pq}(x, z, y) = \dots$ (symmetry in all three variables) whenever $x, y, z \in X$ then g_{pq} is called a generalized partial metric on X.

Könzi, Pajoohesh and Schellekens studied another variant of partial metrics, namely partial quasi-metrics, by dropping the symmetry condition in the definition of a partial metric .we in this study a generalization

Research Article

of partial quasi-metrics. If g_q is a generalized quasi-metric on X then g_q is a generalized partial quasi-metric on X but it is not necessary to hold vice versa (Künzi and Vanjer, 1994).

3.3. Examples

let $X = [0,\infty)$ and (X, d) is an ordinary metric space, let $g_{pq} : X \times X \times X \to [0,\infty)$, be a function, (X, g_{pq}) can define GPQ- metrics on X by

```
1)g_{pq}(x, y, z) = max\{x, y, z\},\
```

 $2)g_{pq}(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}\$ whenever $x, y, z \in X$.

then g_{pq} is a GPQ-metric space and is a GP-metric space, Clearly(X, g_{pq}) is not a G-metric space and is not a GQ-metric space.

3.4. Examples

Let X be a set and let $f: X \to [0,\infty)$ not be an one- to-one function. Set $g_{qf}(x, y, z) = \max\{f(z) - f(y) - f(x)\}$ whenever x, y, $z \in X$. Then g_{qf} is not a GQ-metric on X. Clearly g_{qf} is a GPQ- metric and a GP-metric, but (X, g_{qf}) is not a G-metric

3.5. Examples

```
\begin{split} &\text{if } a=b=c \Rightarrow g_{pq}(a,\,b,\,c)=1;\\ &g_{pq}(a,\,a,\,b)=g_{pq}(a,\,b,\,b)=2;\\ &g_{pq}(a,\,a,\,c)=g_{pq}(a,\,c,\,c)=4;\\ &g_{pq}(b,\,c,\,c)=g_{pq}(c,\,b,\,b)=6;\\ &g_{pq}(a,\,b,\,c)=8;\\ &g_{pq}(b,\,a,\,c)=g_{pq}(b,\,c,\,a)=\cdot\cdot\cdot=9; \end{split}
```

Then (X, g_{pq}) is a GPQ-metric space, but Clearly (X, g_{pq}) is not a GP- metric space and a G-metric space and a GQ-metric space.

3.6. *Lemma*

- a) Each generalized quasi-metric g_{pq} on X is a generalized partial quasi-metric on X with $g_{pq}(x, x, x) = 0$ whenever $x \in X$.
- b) If g_{pq} is a generalized (partial) quasi-metric on X, then its conjugate $g_{pq}^{-1}(x, y, z) = g_{pq}(z, y, x)$ whenever $x, y \in X$ is a generalized (partial) quasi-metric on X.
- c) If g_{pq} is a generalized (partial) quasi-metric on X, then g_{pq}^{+} defined by $g_{pq}^{+}(x, y, z) = g_{pq}(x, y, z) + g_{pq}^{-1}(x, y, z)$ whenever $x, y, z \in X$ is a generalized (partial) metric on X.

3.7. Proposition

Every GPQ-metric space (X, g_{pq}) defines a metric space (X, dg_{pq}) as follows (Abdeljawad *et al.*, 2012; Dehghan and Mazaheri, 2012):

```
d_{gpq}(x,y) = g_{pq}(x,y,y) + g_{pq}(y,x,x) - g_{pq}(x,x,x) - g_{pq}(y,y,y) \text{ for all } x,y \in X.
```

Proof. $1)d_{gpq}(x, y) = 0$ iff $(g_{pq}(x, y, y) - g_{pq}(x, x, x)) + (g_{pq}(y, x, x) - g_{pq}(y, y, y)) = 0$ iff $g_{pq}(x, y, y) - g_{pq}(x, x, x) = 0$ and $g_{pq}(y, x, x) - g_{pq}(y, y, y) = 0$, since $0 \le g_{pq}(x, y, y) - g_{pq}(x, x, x)$ and $0 \le g_{pq}(y, x, x) - g_{pq}(y, y, y) = 0$. so the statements $d_{gpq}(x, y) = 0$ and x = y are equivalent.

2) $d_{gpq}(y, x) = g_{pq}(y, x, x) + g_{pq}(x, y, y) - g_{pq}(y, y, y) - g_{pq}(x, x, x) = d_{gpq}(x, y)$ for all $x, y \in X$. similarly other conditions of a metric space are hold.

3.8. Proposition

 $-2g_{pq}(x, x, x)$

Every GPQ-metric space (X, g_{pq}) defines a quasi- metric space (X, q_{gpq}) as follows:

$$q_{gpq}(x, y) = g_{pq}(x, y, y) + g_{pq}(y, x, x) - 2g_{pq}(x, x, x) \text{ for all } x, y \in X.$$

Proof. (1)
$$q_{gpq}(x, y, y) + g_{pq}(y, x, x) - 2g_{pq}(x, x, x)$$
 for all $x, y \in \mathbb{N}$ $\Leftrightarrow g_{pq}(x, y, y) + g_{pq}(y, x, x) - 2g_{pq}(x, x, x)$ $= g_{pq}(y, x, x) + g_{pq}(x, y, y) - 2g_{pq}(y, y, y) = \circ$ $\Leftrightarrow x = y$.

(2) $q_{gpq}(x, y) + q_{gpq}(y, z) = g_{pq}(x, y, y) + g_{pq}(y, x, x) - 2g_{pq}(x, x, x) + g_{pq}(y, z, z) + g_{pq}(z, y, y) - 2g_{pq}(y, y, y)$ $= (g_{pq}(x, y, y) + g_{pq}(y, z, z) - g_{pq}(y, y, y))$ $+ (g_{pq}(z, y, y) + g_{pq}(y, x, x) - g_{pq}(y, y, y))$

Research Article

$$\geq g_{pq}(x, z, z) + g_{pq}(z, x, x) - 2g_{pq}(x, x, x)$$

$$= q_{gpq}(x, z).$$

3.9. Definition

Let (X, g_{pq}) be a GPQ-metric space and let $\{x_n\}$ be a sequence of points of X. A point $x \in X$ is said to be the limit of the sequence $\{x_n\}$ if $\lim_{n,m\to\infty} g_{pq}(x, x_n, x_n) = 0$, and one says that the sequence $\{x_n\}$ is GPQ-convergent to x.

3.10. Definition

Let (X, g_{pq}) be a GPQ-metric space. A sequence $\{x_n\}$ is called GPQ-Cauchy if, for every $\epsilon > 0$, there is a positive integer N such that $g_{pq}(x_n, x_m, x_l) < \epsilon$ for all n, m, $l \ge N$, that is, if $g_{pq}(x_n, x_m, x_l) \to 0$, as n, m, $l \to \infty$.

3.11. Definition

A generalized partial metric space (X, g_{pq}) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges.

3.12. Lemma

If (X, g_{pq}) is a GPQ-metric space, then the following are equivalent.

- 1) $\{x_n\}$ is GPQ-convergent to x.
- 2) $g_{pq}(x_n, x_n, x) \rightarrow 0$, as $n \rightarrow \infty$.
- 3) $g_{pq}(x_n, x, x) \rightarrow 0$, as $n \rightarrow \infty$.
- 4) $g_{pq}(x_m, x_n, x) \rightarrow 0$, as $n,m \rightarrow \infty$.

Proof. The proof is straightforward.

3.13. Definition

Let (X, g_{pq}) be a GPQ-metric space. Then the following are equivalent

- 1) the sequence $\{x_n\}$ is GPQ-Cauchy
- 2) for an $y \in > 0$, there exists $N \in N$ such that $g_{pq}(x_n, x_m, x_l) < \varepsilon$, for all $n, m, l \ge N$.

3.14. Definition

Let (X_1, g_{pq1}) and (X_2, g_{pq2}) be two GPQ-metric spaces and let $f: (X_1, g_{pq1}) \to (X_2, g_{pq2})$ be a function, then f is said to be GPQ- continuous at a point $a \in X_1$ iff for a given $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X_1$ and the inequality $gpq1(a, x, y) < \delta + g_{pq1}(a, a, a)$ implies that $g_{pq2}(f(a), f(x), f(y)) < \epsilon + g_{pq2}(f(a), f(a), f(a))$.

A function f is GPQ-continuous on X_1 iff it is GPQ-continuous at all a ϵX_1 .

3.15. Proposition

Let (X_1, g_{pq1}) , (X_2, g_{pq2}) be GPQ-metric spaces.

Then a function $f: X_1 \to X_2$ is GPQ-continuous at a point $x \in X$ iff it is GPQ-sequentially continuous at x; that is, whenever $\{x_n\}$ is GPQ-convergent to x one has $\{f(x_n)\}$ is GPQ-convergent to f(x).

Proof. The proof is straightforward.

3.16. Definition

Let (X, g_{pq}) be a GPQ-metric space, $A \subseteq X$. The set A is GPQ-compact, if for every GPQ-sequence $\{x_n\}$ in A there exists subsequence $\{x_n\}$ such that GPQ-converges to $x_0 \in A$.

3.17. Theorem

Let (X_1, g_{pq1}) and (X_2, g_{pq2}) be GPQ-metric spaces and $f: X_1 \to X_2$ a GPQ-continuous function on X_1 . If X is GPQ-compact, then f(X) is GPQ-compact.

Proof. It is clear, since f is GPQ-sequentially continuous on X.

4. Gq-metric Spaces with Weight

4.1. Definition

An arbitrary generalized quasi-metric space (X, g_q) equipped with an arbitrary (so-called weight) function $w: X \to [0,\infty)$ will be called a generalized quasi-metric space with weight. (It should be stressed that no

Research Article

condition of compatibility is assumed at this stage.) Next we define a compatibility condition between generalized quasimetric and weight that will be crucial for the following investigations.

4.2. Definition

A generalized quasi-metric space with compatible weight on a set X is a triple (X, g_q, w) where $g_q : X \times X \times X \to [0,\infty)$ is a generalized quasi-metric on X and $w : X \to [0,\infty)$ is a function satisfying $2w(x) \le g_q(x, y, z) + w(y) + w(z)$ whenever $x, y, z \in X$.

4.3. Lemma

Let (X, g_q, w) be a generalized quasi-metric space with weight. Then clearly w is a compatible weight on X iff \hat{g}_q defined by \hat{g}_q $(x, y, z) = g_q(x, y, z) + w(y) + w(z) - 2w(x)$ whenever $x, y, z \in X$ is a generalized quasi-metric on X.

```
Proof(1). \Rightarrow \hat{g}_q(x, x, x) = \hat{g}_q(y, y, y) = \hat{g}_q(y, x, z) = \hat{g}_q(z, y, x) = \hat{g}_q(z, z, z) = \hat{g}_q(x, z, y)
= \hat{g}_{\alpha}(x, y, z) = g_{\alpha}(x, y, z) + \omega(y) + \omega(z) - 2\omega(x) = 0
\Leftrightarrow g_q(x, x, x) + \omega(x) + \omega(x) - 2\omega(x) = \circ
 \Leftrightarrow g_{\alpha}(y, y, y) + \omega(y) + \omega(y) - 2\omega(y) = \circ
 \Leftrightarrow g<sub>0</sub>(z, z, z) + \omega(z) + \omega(z) - 2\omega(z) = \circ
 \Leftrightarrow x = y = z.
(2) \hat{g}_{\alpha}(x, x, y) = g_{\alpha}(x, x, y) + \omega(x) + \omega(y) - 2\omega(x)
\leq g_q(x, y, z) + \omega(y) + \omega(z) - 2\omega(x)
=\hat{\mathbf{g}}_{q}(\mathbf{x},\mathbf{y},\mathbf{z}),
in the same way
\hat{g}_{q}(x, y, x) \leq \hat{g}_{q}(x, z, y),
\hat{g}_{q}(y, x, x) \leq \hat{g}_{q}(x, y, z),
\hat{g}_{q}(y, x, x) \leq \hat{g}_{q}(x, z, y).
(3) \hat{g}_q(x, y, z) = g_q(x, y, z) + \omega(y) + \omega(z) - 2\omega(x)
\leq g_{q}(x, a, a) + g_{q}(a, y, z) + \omega(y) + \omega(z) - 2\omega(a)
= (g_a(x, a, a) + \omega(a) + \omega(a) - 2\omega(x))
+ (g_{\alpha}(a, y, z) + \omega(z) + \omega(y) - 2\omega(a))
= \hat{g}_q(x, a, a) + \hat{g}_q(a, y, z).
then \hat{g}_q is a generalized quasi-metric on X.
\Leftarrow let \hat{g}_{q}(x, y, z) = g_{q}(x, y, z) + \omega(x) + \omega(y) - 2\omega(z). since \hat{g}_{q}(x, y, z) \ge 0,
then 2\omega(z) \le g_0(x, y, z) + \omega(x) + \omega(y).
```

4.4. Lemma

Let (X, g_q) be a generalized quasi-metric space with weight $w: X \to [0,\infty)$. Then w is a compatible weight on the generalized quasi-metric space (X, g_q) where g_q denotes the generalized quasi-metric on X defined by g_q $(x, y, z) = g_q(x, y, z) + g_{qw}(x, y, z)$ whenever $x, y, z \in X$.

```
\begin{split} & Proof. \ g_q' \left( x, \, y, \, z \right) = g_q(x, \, y, \, z) + g_{qw}(x, \, y, \, z) \leq g_q(x, \, a, \, a) + g_q(a, \, y, \, z) + \\ & g_{qw}(x, \, a, \, a) + g_{qw}(a, \, y, \, z) = g_q' \left( x, \, a, \, a \right) + g_q' \left( a, \, y, \, z \right). \end{split}
```

4.5. Proposition

If (X, g_q, w) is a generalized quasi-metric space with compatible weight, then $(X, \hat{g}_q, \widehat{w})$ where $\hat{g}_q(x, y, z) = \min\{g_q(x, y, z), 1\}$ and $\widehat{w}(x) = \min\{\widehat{w}(x), 1\}$ whenever $x, y, z \in X$.

Proof. For either case it is well known and easy to see that \hat{g}_q is a generalized quasi-metric on X. Related arguments show that given x, y, z \in X, $2w(x) \le g_q(x, y, z) + w(y) + w(z)$ implies that min{ 2w(x), 1} $\le \min\{g_q(x, y, z), 1\} + \min\{w(y), 1\} + \min\{w(z), 1\}$.

4.6. Lemma

Note that if (X, g_q, w) is a generalized quasi-metric space with compatible weight, then for any generalized quasi-metric g'_q on X such that $g'_q(x, y, z) \ge g_q(x, y, z)$ whenever $x, y, z \in X$, (X, g'_q, w) is also a generalized quasi-metric space with compatible weight.

Proof. The assertion is obvious, since $2w(x) - w(y) - w(z) \le g_q(x, y, z) \le g'_q(x, y, z)$ whenever $x, y, z \in X$.

Research Article

REFERENCES

Abdeljawad T, Karapınar E and Taş K (2012). A generalized contraction principle with control functions on partial metric spaces. *Computers and Mathematics with Applications* **63** 716–719.

Bukatin M, Kopperman R, Matthews S and Pajoohesh H (2006). Partial Metrics and Quantale-valued Sets. Preprint.

Dehghan Nezhad A and Mazaheri H (2010). New Results in G-best Approximation in G-metric spaces, Brief Communications. *Ukrainian Mathematical Journal* **62** 567–571.

Heckmann R (1999). Approximation of metric spaces by partial metric spaces. *Applied Categorical Structures* **7** 71–83.

Künzi HPA, Pajoohesh H and Schellekens MP (2006). Partial quasi-metrics, *Theoretical Computer Science* 365 237 – 246.

Künzi HPA and Vajner V (1994). Weighted quasi-metricsin: Proceedings of the 8th Summer Conference on Topology and its Applications. *Annals of New York Academy of Sciences* 728 64–77.