INVENTORY AND EVALUATION OF AQUATIC MACROPHYTE DIVERSITY OF ERNAKULAM DISTRICT, KERALA, SOUTH INDIA

Jasna T.A and *T.V. Anna Mercy

Department of Aquaculture, Sacred Heart College (Autonomous) (Affiliated to M.G. University, Kottayam, Kerala), Kochi,682013 India *Author for Correspondence:annamercy2002@yahoo.co.in

ABSTRACT

Inventory of aquatic plant diversity was conducted in 22 ponds of Ernakulam district in Kerala, South India during 2022 July to 2023 May. During the period of study 50 macrophytes were identified, which comes under 37 genera and 29 families. Kerala has an abundance of indigenous aquatic plants but it is not yet well documented or utilized for the purpose. Hence it is felt urgent to have a data on the availability and suitability of the aquatic plants of Ernakulam district as ornamental aquarium plants. The aquatic plants collected from different localities were they were categorized into emergent, submerged, floating and marshy plants. Out of the fifty plants, 8 plants belonging to 4 families are emergent plants, 14 plants belonging to 5 families are submerged plants, 18 plants belonging to 7 families are floating plants and 10 plants belonging to 7 families are marshy plants. Attempts were made to propagate the plants under captivity. There is a huge diversity of aquatic plants in the natural ecosystems of Ernakulam district which can be exploited judiciously and propagated under captive conditions for ornamental purposes such as aquascaping and aquarium keeping. This can serve as an employment opportunity for the women and unemployed youth. This baseline date on the biodiversity of aquatic plants of Ernakulam district will be helpful for the conservation and management strategies of wet land and aquatic habitats. In Ernakulam district the natural ecosystems are deteriorating at an alarming rate due to various reasons. It is important to conserve the natural ecosystems otherwise; there will be a significant loss in the germplasm of the precious unexploited aquatic flora.

Keywords: Aquatic Plants, Macrophytes, Ernakulam, Submergent Plant, Emergent Plant, Free Floating Plants, Attached Floating Plants

INTRODUCTION

Plants that have adapted to live in aquatic environments, either in salt water or freshwater are known as aquatic plants. They are also referred to as hydrophytes or macrophytes to distinguish them from other microphytes, such as algae. Most water bodies have a few dozen different species of aquatic plants growing in them. Aquatic plants provide many of the same functions as terrestrial plants. Macrophytes have several intrinsic properties that makes them an indispensable component of the ecosystem. Plants are the primary producers in an ecosystem since they produce their own food as well as food for the consumers or animals of that ecosystem. In addition, they provide oxygen through photosynthesis and habitat for many aquatic organisms. They also remove carbon dioxide in the process of photosynthesis. They have a significant effect on soil chemistry and light levels as they slow down the flow of water and capture pollutants and trap sediments. The macrophytes stabilize the surface of the beds, provide good conditions for physical filtration, prevent vertical flow systems from clogging, insulate against frost during winter, and provide a huge surface area for attached microbial growth (Brix H 1994). They play an important role in oxygen production, nutrient cycling, water quality improvement and sediment stabilization (Mohan and Hosetti 1999). There are three common categories of aquatic vegetation: Emergent, Submerged, Floating and Marshy. Emergent vegetation is one of the most common types of aquatic vegetation and it grows with its

roots down in the sediment of water and the majority of the shoots stick up out of the water. Emergent vegetation provides a habitat for certain songbirds, or wading birds that may nest at these sites or use them as feeding areas. Submerged plants are those that are wholly underwater and may be rooted or unrooted. They are usually in depths of 2-10 or more feet. Submerged vegetation provides a habitat for small fish, which may seek refuge from predators. They may also use this vegetation.

In the present study, it is intended to document a baseline date on the biodiversity of aquatic plants of Ernakulam district, which will be helpful for the conservation and management strategies of wet land and aquatic habitats. Suitable plants can be used for ornamental purposes in aquariums and paludariums that will fetch employment opportunities for many women and unemployed youths. In recent years, the global market for aquariums and fish-keeping has experienced remarkable growth and India has emerged as a prominent player in the industry. The term aquascaping has now become a valued art and better known by aquarists all over the world. It is the craft of arranging aquatic plants, as well as rocks, stones, cave work, or driftwood, in an aesthetically pleasing manner within an aquarium—in effect, gardening under water. The biodiversity of aquatic plants in this district can be exploited for the purpose. The global aquarium plant market size was valued at USD 1.4 billion in 2021 and is expected to expand at a CAGR of 5.8% from 2021 to 2030. The aquascaping trade in India is still in infancy and only having demand in the major cities. All these information shows that there is a growing demand for suitable ornamental aquatic plants in the market. In Ernakulum district the natural ecosystems are deteriorating at an alarming rate due to various reasons. It is important to conserve the natural ecosystems, otherwise, there will be a significant loss in the germplasm of the precious unexploited aquatic flora.

MATERIALS AND METHODS

The present work was conducted in Ernakulam district. An inventory of aquatic plants was conducted in twentv two ponds of twelve aquatic habitats such as Moothakunnam. Puthenvelikkara, Varappuzha, Thiruthipuram, Andipillykavu, Ernakulam proper, Madavana, Kundannur, Theyera, North Parur, Nettur, and Kunnukara of Ernamkulam district, Kerala, during the period from July 2022 to April 2023 .The twigs of plants were collected periodically with flowers and fruits. The habit, morphology and floristic characters are recorded during the time of collection. The plants collected were identified with the help of Ansari et al., (2016).

RESULTS AND DISCUSSION


During the period of study from July 2022 to April 2023 Fifty species of plants were collected from twenty two ponds/aquatic habitats of twelve different aquatic localities.

List of plants collected during the study period with their scientific name and family is presented in table 1. List of ponds/aquatic habitat and localities are given in table 2.

List of plants and the ponds from where they are collected is given in the table 3 Out of the fifty plants, 26% are submerged plants, 5% are emergent hydrophytes, 3% comes under the category of floating and attached floating plants and 30% are marshy plants Paul (2022) made a study on the aquatic plant diversity studies of the ponds of Trichur district. She collected 41 types of plants from different ponds of Trichur. She also got a higher percentage of marshy plants.

The categorical list of the plants is given in table 4. These plants come under 37 genera and 29 families. The most diverse family is Menyanthaceae followed by Hydrocharitaceae. Out of the 50 plants collected, 57% plants are fit for aquarium setting, 44% plants are suitable for as spawning beds to lay their eggs.

Floating leaved plants are those that have leaves that float on the surface of the water and can be rooted or unrooted. Many insects use the leaves of floating plants to deposit eggs and to feed. Marshy plants are seen in marshy areas which has high potential for ornamental purposes. Eventhough some of the aquatic plants are nuisances which require removal, most of the native plants provide many benefits to the ecosystem including spawning and habitat areas for organisms in the ecosystem, as well as fishing and wildlife viewing areas for the residents around.

Attempts were made to propagate the plants under captivity. Emergent plants such as *Veronica baccabunga* and *Myriophyllum oliganthum* could be propagated by vegetative propagation. Submerged plants such as *Cerratophyllum, Hydrilla, Cabomba, Rotala, Vallisneria, Bacopa*, could be propagated by vegetative

Plate 2: Photographs of plants collected during the study

propagation and floating plants such as *Lemna minor Eicchornia, Azolla, Aponogetonnatans, Pistia, Nymphoides*(af) and marshy plants such as *Ascentella, Fittonia, Ldwigia could be propagated by vegetative propagation. Rotala rotuntifolia* was propagated by their seeds. Experiments were also done to study the adaptability of these plants under aquarium conditions. *Vallisneria, Cerratophyllum, Hydrilla, Anubias barteri, Cabomba, Sagittaria, Fittonia, Bacopa, Veronica, Ludwigia* were seen growing well in aquairums

and hence can be recommended for aquascaping. Many of the submerged plants such as *Vallisneria*, *Nymphoides*, *Sagittaria*, *Cerratophyllum*, *Hydrilla*, *Myriophyllum*, *Bacopa*, *Aponogeton apendiculus* are found suitable for paludariums.

1. Centella asiatica	26. Azolla pinnata
2. Pista tratiotes	27. Dryopteris marginalis
3. Cabomba caroliniana	28. Fittonia albivenis
4. Cabomba caroliana	29. Veronica beccabunga
5. Cerratophyllum demersum	30. Marsilia minuta
6. Rotala rotundifolia	31. Aponogeton appendiculus
7. Rotala rotundensis	32. Lemna minor
8. Hydrilla verticillata	33. Brachiaria mutica
9. Ottelia alismoides	34. Echinodorus chordifolius
10. Vallisneria natans	35. Elodea canadensis
11. Nymphoides auratiacum	36. Sagittaria sagittifolia
12. Nymphoides hydrophylla	37. Eclypta prostrate
13. Nymphoides indica	38. Acorus calamus
14. Nymphoides malabarica	39. Salvinia molesta
15. Nymphoides micranta	40. Anubias barteri
16. Nymphoides nauchali	41. Echinodorus osiris
17. Eichornia crassipes	42. Alternanthera philoxeroides
18. Bacccopa monnieri	43. Curcuma angustifolia
19. Trapa natans	44. Ottelia pers
20. Myriophyllum oliganthum	45. Vallisneria spiralis
21. Sagittaria guayasensis	46. Limnophila rugosa
22. Salvinia natans	47. Ludwigia adscendens
23. Lymnobium laevigatum	48. Ludwigia sedoides
24. Hydrocleys nymphoides	49. Apponogeton natans
25. Cerapteris thalicoides	50. Bacopa hamiltoniana

PLANTS' NAMES

Species diversity is more in Puthenvlikkara followed by Thiruthipuram. Most of the species collected from Varapuzha belong to the family Hydrocharitaceae whereas most of the plants of Thiruthipuram belong to the family of Manyanthaceae.

CONCLUSION

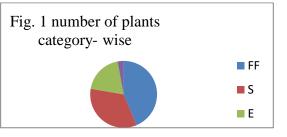
The study is aimed to make an inventory of the availability and suitability of the aquatic plants of Ernakulam district as ornamental aquarium plants. In the present study, fifty numbers of aquatic plants were collected from different localities of Ernakulam district. They were categorized into emergent, submerged, floating and marshy plants. Out of the fifty plants 8 plants belonging to four families are emergent plants 14 plants belonging to 5 families are categorized as submerged plants.18 plants belonging to 7 families are floating plants and 10 plants belonging to 7 families are marshy plants. Attempts were made to propagate the plants under captivity. There is a huge diversity of aquatic plants in the natural ecosystems of Ernakulam district which can be exploited judiciously and propagated under captive conditions for ornamental purposes such as aquascaping and aquarium keeping. This can serve as an employment opportunity for the women and unemployed youth. This baseline date on the biodiversity of aquatic plants of Ernakulam district will be helpful for the conservation and management strategies of wet land and aquatic habitats. In Ernakulum district the natural ecosystems are deteriorating at an alarming rate due to various reasons. It is important

to conserve the natural ecosystems otherwise; there will be a significant loss in the germplasm of the precious unexploited aquatic flora.

SL	PLANT (COMMON NAME /LOCALNAME)	SCIENTFICNAME	FAMILY	COLLECTED AREA
1.	Indian pennywort (Kodakan)	Centella asiatica	Apiaceae	Moothakunnam
2.	Pistia (aakashathaamara, kudappaayal)	Pistia stratiotes	Araceae	Moothakunnam
3.	Waterchestnut	Trapa natans	Trapaceae	Moothakunnam
4.	African paayal	Salvinia molesta	Salviniaceae	Moothakunnam
5.	Fanwortgreen	Cabomba caroliniana	Cabombaceae	Puthenvelikara
6.	Fanwortred	Cabomba caroliana	Cabombaceae	Puthenvelikara
7.	Hornwort	Cerratophyllum demersum	Ceratophyllaceae	Puthenvelikara
8.	Roundleaftoothcap	Rotala rotundifolia	Lythraceae	Puthenvelikara
9.	Rotala	Rotala rotunadensis	Lythraceae	Puthenvelikara
10.	Ribbonplant	Vallisneria natans	Hydrocharitaceae	Puthenvelikara
11.	Waterweed, Canadian pond weed	Elodea canadensis	Hydrocharitaceae	Puthenvelikara
12.	Creeping burhead	Echinodorus chordifolius	Alismataceae	Puthenvelikara
13.	Arrow head	Sagittaria sagittifolia	Alismataceae	Puthenvelikara
14.	Horsetail plant	Ceratopteris thalictroids	Pteridaceae	Puthenvelikara
15.	Azola	Azolla pinnata	Azollaceae	Puthenvelikara
16.	Woodfern	Dryopteris marginalis	Dryopteridaceae	Puthenvelikara
17.	Fittonia	Fittonia albivenis	Acanthaceae	Puthenvelikara
18.	Paragrass	Brachiaria mutica	Poaceae	Puthenvelikara
19.	Sweet flag	Acorus calamus	Acoraceae	Puthenvelikara
20.	Koova	Curcuma angustifolia	Zingiberaceae	Puthenvelikara
21.	Mossy speedwell	Veronica beccabunga	Plantaginaceae	Puthenvelikara
22.	Water thyme	Hydrilla verticillata	Hydrocharitaceae	Varapuzha

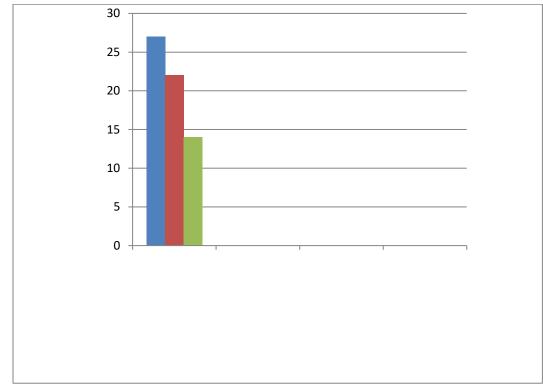
23.	Duck letuse	Ottelia alismoides	Hydrocharitaceae	Varapuzha
24.	Paruakizhangu	Ottelia pers	Hydrocharitaceae	Varapuzha
25.	Aponogeton	Aponogeton appendiculus	Aponogetonaceae	Varapuzha
26.	False daisy	Eclypta prostrata	Asteraceae	Varapuzha
27.	Naali thalthaamara	Marsilia minuta	Marsileaceae	Andipillykavu
28.	Brahmi	Bacopa monnieri	Plantaginaceae	Andipillykavu
29.	Eel grass	Vallisneria spiralis	Hydrocharitaceae	Andippillykavu
30.	Yellow flowered snowflake	Nymphoides auratiacum	Menyanthaceae	Thiruthipuram
31.	Neythel	Nymphoides hydrophylla	Menyanthaceae	Thiruthipuram
32.	Chinnambal	Nymphoides indica	Menyanthaceae	Thiruthipuram
33.	Vellambal	Nymphoides malabarica	Menyanthaceae	Thiruthipuram
34.	Violetambal	Nymphoides micrantha	Menyanthaceae	Thiruthipuram
35.	Poothali,Ambal	Nymphoides nauchali	Menyanthaceae	Thiruthipuram
36.	Kulavazha	Eichornia crassipes	Pontederiaceae	Ernamkulam
37.	Waterpoppy	Hydrocleys nymphoids	Alismataceae	Thevara
38.	Duck potato	Sagittaria guayasensis	Alismataceae	Thevara
39.	Watermilfoil	Myriophyllum oliganthum	Haloragaceae	Thevara
40.	Duckweed	Lemna minor	Araceae	Thevara
41.	Melon sword	Echinodorus osiris	Alismataceae	Parooor
42.	Anubias	Anubias barteri	Araceae	Parooor
43.	Water prime rose	Ludwigia adscendens	Onagraceae	Kunnukara
44.	Mosaic flower	Ludwigia sedoides	Onagraceae	Kunnukara
45.	Bacopa	Bacopa hamiltoniana	Plantaginaceae	Kunnukara
46.	Floating lace plant	Aponogeton natans	Aponogetonaceae	Kunnukara
47.	Wrinkled marsh weed	Limnophila rugosa	Plantaginaceae	Kunnukara
48.	Amazon frogbit plant	Lymnobium laevigatum	Hydrocharitaceae	Kundannoor
49.	Alligator weed	Alternanthera philoxeroides	Amaranthaceae	Nettoor
50.	Water fern	Salvinia natans	Salviniaceae	Madavana

TABLE 2.LIST OF PONDS/AQUATIC HABITAT AND LOCALITIES FROM WHEREPLANTS ARE COLLECTED


PLANTS ARE COLLECTED	PLANTS ARE COLLECTED			
Number of ponds/aquatic habitat	Name of Locality	GPS location of		
		pond		
P1	PUTHENVELIKARA	Lat:10.190844°		
		Long:76.23692°		
P2	Elanthikara, Puthenvelikara	Lat:10.1405022°		
		Long:76.23051558°		
P3	Stationkadav, Puthenvelikara	Lat:10.179321°		
		Long:76.244463°		
P4	Gothuruth, Puthenvelikara	Lat:10.18857°		
		Long:76.20879°		
P5	Chenthamangalam,	Lat:10.16772°		
	Puthenvelikara	Long:76.25085°		
P6	Polistation road, Puthenvelikara	Lat:10.14724°		
	· · · · · · · · · · · · · · · · · · ·	Long:76.25085°		
P7	Arankavu, Puthenvelikara	Lat:10.17650°		
		Long:76.25485°		
P8	Andippillykavu	Lat:10.178252°		
	i maipping nava	Long:76.215202°		
P9	Andippillykavu temble	Lat:10.1784°		
	Andippinykava temole	Long:76.21106°		
P10	Madaplathuruth, andippillikavu	Lat:10.154894°		
110	Wadapiandruni, andippinikavu	Long:76.224098°		
P11	Thekkethuruth, andippillykkavu	Lat:10.18357°		
1 1 1	пеккешиний, антрритуккачи	Long:76.21969°		
P12	Paroor	Long.70.21909		
F 12	r alooi	Long:76.224098°		
P13	Kunnukara	Long.70.224098		
F15	Kulliukara	Long:76.3040481°		
P14	Thimsthimson	Long. 70.3040481		
P14	Thiruthipuram			
D15	X7	Long:76.215202°		
P15	Varapuzha	Lat:10.076323°		
DIC	XZ 1 1 1 1 1	Long:76.277644°		
P16	Kadamakudi, varapuzha	Lat:10.0634103°		
D17		Long:76.2493503°		
P17	Thevara	Lat:9.937906°		
		Long:76.294666°		
P18	Nettoor	Lat:9.936615°		
		Long:76.313612°		
P19	Madavana	Lat:9.909712°		
		Long:76.317992°		
P20	Ernamkulam	Lat:9.931714°		
		Long:76.318002°		
P21	Moothakunnam temple pond	Lat:10.1886°		
		Long:76.2028°		
P22	Moothakunnam	Lat:10.189429°		
		Long:76.201744°		

PLANT NAME	CATOGORY	POND NO.
Centella asiatica	marshy	P1, p8, p18, p20
Pistia stratiotes	free-floating	P1, p8, p14, p17, p22
Lemna minor	Free floating	P17, p22
Anubias barteri	marshy	P12
Cabomba caroliniana	submerged	<i>P1, p10, p17, p22</i>
Cabomba caroliana	submerged	<i>P1, p10, p17, p22</i>
Cerratophyllum demersum	submerged	<i>P1, p10, p17, p22, p13</i>
Rotala rotundifolia	Submerged and marshy	P1
Rotala rotunadensis	Submerged and marshy	<i>P1, P2, P15, P21</i>
Hydrilla verticillata	submerged	P2, P15, P21, P22
Ottelia alismoides	submerged	<i>P1, P2, P3, P15, P22</i>
Vallisneria natans	Sub merged	<i>P1, P2, P3</i>
Lymnobium laevigatum	free-floating	P2, P18, P20
Elodea canadensis	submerged	<i>P1, P2, P3, P5</i>
Ottelia pers	submerged	P15, P16, 17, P21
Vallisneria spiralis	submerged	P3, P8
Nymphoides auratiacum	Attached floating	P2, P3, P14
Nymphoides hydrrophylla	Attached floating	P2, P3, P14
Nymphoides indica	Attached floating	P2, P3, P4, P14
Nymphoides malabarica	Attached floating	<i>P1, P2, P3, P4P14</i>
Nymphoides micrantha	Attached floating	<i>P1, P2, P3, P14</i>
Nymphoides nauchali	Attached floating	<i>P1, P2, P3, P14</i>
Eichornia crassipes	free-floating	<i>P5, P20, P21, P22</i>
Hydrocleys nymphoids	Attached floatig	P17, P18, P14
Sagittaria guayasensis	Attached floating	P14, P17
Echinodorus chordifolius	Emergent	<i>P6, P7</i>
Sagittaria sagittifolia	Attached floating	<i>P6, P7</i>
Echinodorus osiris	Emergent	P12.P13
Trapa natans	free-floating	P14, P22
Myriophyllum oliganthum	Emergent	<i>P17, P15, P6</i>
Ceratopteris thalictroids	Emergent	<i>P7, P18</i>
Azolla pinnata	Free floating	P4, P6, P9
Dryopteris marginalis	Marshy	<i>P3, P4</i>
Fittonia albivenis	marshy	P7
Bacopa monnieri	submerged	P9, P10, P11
Bacopa hamiltoniana	submerged	P13
Veronica beccabunga	emergent	P1
Limnophila rugosa	emergent	P13
Marsilia minuta	marshy	<i>P7, P10</i>
Aponogeton appendiculus	submerged	P15
Aponogeton natans	free-floating	P13
Brachiaria mutica	emergent	P2
Acorus calamus	emerged	<i>P3</i>
Eclypta prostrata	marshy	<i>P15, P22</i>
Salvinia molesta	free-floating	P4, P6, P8, P21, P22

 TABLE 3. Showing Plants and their category and locality.


Salvinia natans	free-floating	P19, P20, P22
Alternanthera philoxeroides	marshy	P18
Curcuma angustifolia	marshy	<i>P1</i>
Ludwigia adscendens	marshy	P21
Ludwigia sedoides	marshy	P13

CATEGORY	NUMBEROF PLANTS
Free floating (FF)	18
Submerged (S)	14
Emergent (E)	8
Marshy (M)	10

Table 4: SHOWING SUITABILITY LIST OF PLANTS

Sl.	PLANTS FIT FOR	PLANTS FIT FOR	FIT FOR BOTH
No.	AQUARIUM	PALUDARIUM	AQUARIUM AND
			PALUDARIUM
1.	Hydrocleys nymphoides	Dryopteris marginalis	Baccopa monnieri
2.	Ceratopteris thalicoides	Fittonia albivenis	Fittonia albivenis
3.	Fittoniav albivenis	Baccopa monnieri	Limnophila rugosa
4.	Marsilia minuta	Bacopa hamiltoniana	Acorus calamus
5.	Aponogetonappenticulatus	Veronica beccabunga	Ludwigiaadscenens
6.	Vallisneria spiralis	Limnophila rugosa	Vallisneria spiralis
7.	Limnophila rugosa	Acorus calamus	Centellla asiatica
8.	Ludwigia adscendens	Eclypta prostrata	Anubias barteri
9.	Centella asiatica	Alternanthera philoxeroides	Rotala rotundifolia
10.	Cabomba caroliniana	Curcuma angustifolia	Rotalarotunadensis
11.	Cabomba caroliana	Ludwigia adscenens	Vallisneria natans
12.	Cerratophyllum demersum	Vallisneria spiralis	Cabomba caroliana
<i>13</i> .	Rotala rotundifolia	Centellla asiatica	
14.	Rotala rotunadensis	Anubias barteri	
15.	Hydrilla verticillata	Rotala rotundifolia	
16.	Vallisneria natans	Rotala rotunadensis	
17.	Bacopa monnieri	Vallisneria natans	
18.	Trapa natans	Lymnobium laevigatum	
<i>19</i> .	Myrioohyllum oliganthum	Elodea canadensis	
20.	Sagittarius guayasensis	Ceratopteris thalictroids	
21.	Aponogeton natans	Cabomba caroliana	
22.	Echinodorus chordifolius	Cabomba caroliniana	
23.	Eloda Canadensis		
24.	Sagittarius sagittifolia		
25.	Acorus calamus		
26.	Anubias barteri		
27.	Echinodorus osiris		

- PLANTS FIT FOR AQUARIUM.
- PLANTS FIT FOR PALUDARIUM
- PLANTS FIT FOR BOTH AQUARIUM AND PALUDARIUM

FIGURE 2: SHOWS SUITABILITY OF PLANTS

ACKNOWLEDGEMENT

The authors are thankful to Dr. V.C. Geoge, Director of the department of Aquaculture and to the Principal, Sacred Heart College, Thevera for providing facilities for doing the work.

REFERENCES

Ansari *et al* (2016). *Aquatic and Wetland Flora of Kerala: Flowering Plants*. Publ. by Malabar Botanical Garden and Institute for Plant Sciences Kozhikode -14. (An Institution of Kerala State Council for Science, Technology and Environment), Edited by Frontline Communication, Jafferkhan Colony Junction, Calicut 4. 945p

Brix Ĥ (1994). Functions of macrophytes in constructed wetlands. *Water Science and Technology*, **29** (4) 71-78.

Mohan and Hosetti (1999). Aquatic Plants for Toxicity Assessment. *Environmental Research*, **81**(4) 259-274.

Tessy Paul, P.,2022. Aquatic Plant Diversity of Ponds in Thrissur District, Kerala, India. *Indian Journal of Ecology* **49**(1) 174-177 *DOI: https://doi.org/10.55362/IJE/2022/3498*