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ABSTRACT 

Details of auxins action, function and its  regulations are still unclear. Rooting of cuttings is  usually 

achieved by  exogenous  auxins  commercially available but  details of the processes,  molecular and 

genetic changes are not understood  properly and clearly because of the  complex  biological  nature of 

the processes and  environmental effects. Here, it was tried to elaborate the topic with special emphasis on  

rooting of cuttings. 
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INTRODUCTION 

In  asexual mode of propagation, the vegetative  parts  such as stem cuttings are used, the progeny  always 

resembles the mother plant in all respects and maintaining the progeny of elite plants  with all qualities 

(Hendrique et al.,2006). Vegetative propagation is an integral  part of tree improvement, as it is  needed 

for establishing clonal seed orchards. Also, mass vegetative multiplication of selected genotypes is 

possible. In most tree species exogenous application of natural and synthetic auxins facilitates 

adventitious  root   production from branch cuttings(Hendrique et al.,2006) .  Kester et al.(1990)  reported 

that the most reliable rooting   hormone is indolebutyric acid (IBA) although others such as 

napthaleneacetic acid (NAA)  can also be used. Although   there are reports that it may also be toxic to 

young/succulent  cuttings of certain species, IBA is still probably the  best hormone because of being non-

toxic to plants over a wide range of concentration(Figure1). 

 
Figure1: Rooting with different auxins 
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Rooting of cuttings is not always successful  and the reasons for rooting failure are not clearly understood. 

Factors such as cultivar and  age of source tree,  the  collection date, length, diameter, and degree of 

hardening   of the cuttings, injury and heat  treatments of the cuttings  and the treatment concentrations of 

auxin-like compounds can affect rooting (Tsipouridis et al., 2006). The  indole butyric acid (IBA), a 

synthetic auxin induces  rooting in  peach cuttings, but its effect can  vary with  the  type of cutting 

used(Couvillon,1985). Tsipouridis et al. (2003) found that IBA (2000 ppm) stimulated rooting of 

hardwood and semi-hardwood cuttings but rooting  success  varied with peach cultivar. In contrast, 

softwood  cuttings treated for  24h with 25ppm solution of IBA rooted (Gur et al.,1986). In several 

species, rooting  success had been related to endogenous auxin concentrations (Guerrero et al.1999) . 

 

ROOTING OF CUTTINGS 

Rooting  of cuttings is a natural phenomenon there are plants in which rooting of cuttings is  easy. But in 

many plants stem cuttings do not root easily, even rooting is not possible except undergone some 

treatments. These are known  as difficult to root. Many economically and ecologically important 

hardwood tree species  have a low genetic and physiological capacity for adventitious root formation and  

are  considered recalcitrant to routine, commercial  scale vegetative propagation via rooted cuttings (Pijut 

et al.,2011) . Propagation of tree planting  stock by rooted cuttings can overcome the problems  with  seed 

viability, germination, and storage  and  dormancy associated with seed; shorten the time to flowering or 

encourage consistent flowering; maintain superior genotypes; and contribute to the genetic 

uniformity(Macdonald,1986) . This  method can allow for the production of  clones of elite, pest or 

disease resistant or  genetically  improved plants for planting and  breeding programs. Disadvantages 

associated  with  clonal reproduction and adventitious root  formation may be less branched roots, more 

horizontal roots,  poor  root distribution around the stem or too few roots. 

Adventitious root  formation is different from lateral root formation, as the development of roots  on  

excised   aerial plant parts or from an  unusual point of  origin on the  plant. De Klerk et al.(1999) 

summarized the successive phases in rooting of apple  micro-cuttings as dedifferentiation,  was the 

activation  of cells by wounding related compounds and auxin.  The induction phase was the initiation of 

cell  division where auxin stimulates the formation of root  meristemoids. During out growth in the stem 

phase, meristemoids develop into typical dome shape  root primordial. Root  primordial elongate and  

develop during the  differentiation  phase and finally grow out of stem. 

Wound induced roots are the major type of root in stem cuttings. Once  the stem (or shoot)  is removed  

from the plant (wounding) a series of wound responses occur and de novo adventitious  root regeneration 

proceeds(Hartmann et al.,2002).  At the wound sealing off (protection from desiccation and  pathogens) 

occurs by the production of suberized,  protective cells. Cells begin to divide, and a layer of  parenchyma 

cells (callus) then forms at the wound site. The use of auxin during adventitious rooting enhances the 

formation of callus  in  addition to inducing the  formation of roots. Cells in the vicinity of the vascular  

cambium and phloem  begin  to divide and initiate  adventitious roots (Hartmann et al., 2002)
. 

 

FACTORS IN ROOTING OF STEM CUTTINGS 

Stem cuttings need rooting regulators  called auxins, to make roots. The plant itself produces  these 

natural auxins, in limited quantities  within the leaves and  meristems.  When cutting  are taken from the 

mother plant, the auxins  are  stored at the basal ends. The auxins move from cell to cell by polar 

transport. Polar transport   takes place in the xylem, phellogen, and other  transport vessels in the shoots 

and stems.  The plant makes use of natural transport  proteins. These proteins allow the auxins to be taken 

into the  top of the plant cell, move through  the cell, and be released at the bottom of the cell. Cell by 

cell, auxins  are transported  downward. Polar transport of the auxins occurs at a speed of approximately 

one  centimeter per hour. The auxins accumulate in the  basal ends of the  cuttings. When the amount of 

auxins at the basal ends of the cuttings exceeds a  boundary level then cells reprogram to become root 

cells. Usually natural auxin production  in the cutting is not sufficient. So, auxins, usually synthetic 
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auxins are supplied at the basal  end of the cuttings to achieve consistent and uniform roots. Rapid and 

steady  rooting occurs around the base of the cuttings. Important synthetic auxins are indole-3-butyric 

acid, 1-napthalneacetic acid etc. More  than one auxin can also be applied, sometimes with other 

chemicals for better rooting  suggesting synergistic effects(Tables 1&2). However, it is noted  that 

environmental and endogenous factors also influence rooting e.g. hormones, light quality,   light quantity, 

oxygen, carbon dioxide, nitric oxide,  free radicals, relative  humidity, pH of the growth  media, physical 

structure of the growth media,  antioxidants, wounding, polyamines and  concentration and types of 

nutrients in the media etc.  For most of these factors, the biological  role is uncertain.  Some may enhance 

rooting simply by keeping shoots  healthy while rooting process takes place.  Polyamines  may act more 

directly by affecting the production or  distribution of endogenous factors such  as auxin (Naija et 

al.2009) . NO may be acting as an intermediary  in auxin signaling (Pagnussat et al., 2003). 

 

Table 1:  Vegetative  propagation of some tree species 

Tree species Treatment of  cuttings 

(mM) 

Rooting (%) References 

Acer rubrum 4.9IBA in talc 59 Henry and Preece, 

1997
 

Acer saccharum 12.3 or 24.6 IBA; 

13.4 or 26.9 NAA; 

IBA + NAA 

<30 Alsup et al., 2004
 

Betula  spp. 4.9 IBA 24-100 Barnes, 2002
 

Castanea dentala 20.7K-IBA 3 Preece et al., 2001
 

Fagus  grandifolia 9.8IBA + 5.4 NAA 25 Barnes, 2003
 

Juglans  cinerea 0-74 IBA : 0-62K-1BA 6.3-88 Pijut and Moore, 2002;  

Pijut, 2004. 

Prunus  serotina 0-74 IBA; 0-62K-IBA 50-54  Pijut and Espinosa, 

2004
 

Quercus alba 49.2 IBA 0-30 Zaczek et al ., 1997
 

Quercus bicolor 29.5 IBA 88-91 Amissah and Bassuk, 

2007
 

Quercus nigra 49.21 BA 20-27 Zaczek et al ., 2000
 

Robinia  pseudoacacia 1.3-4.0 NAA; 

1.2-3.7 IBA 

35-83 Swamy et al., 2002 a,b
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Table 2: Vegetative propagation of some fruit tree species 

Tree  species Treatment Rooting (%) Reference 

Artocarpus              5000ppm IBA+              75                   Chatterjee and 
heterophyllus Lam   etiolation                                            Mukherjee, 1980 

 
Prunus ulmifolia      2500ppm IBA                88                   Ivanika and 
(Plum)                                                                              Pastyrick, 1978 

 
Peach                    250ppm IBA                  56                   Tworkishi and 
                                                                                        Takeda, 2007 

 
Malus (Azayesh)      2500ppm IBA in           31.48              Dvin et al., 2011 
                             Cocopeat+perlite (1:1)                                

 
MM106 apple         Agrobacterium+             30                   Karakurt et al., 
                             Sorbitol+4000ppmIBA                          2009 

 
Psidium guajava L   4000ppm IBA+shade      40.11              Kareem et al., 
                                                                                        2016 

 
Annona muricala     2000mg per kg               70                  Santos et al., 2011 

 
MOLECULAR ASPECTS 

AUXIN BIOSYNTHESIS AND METABOLISM 

IAA  is believed to be synthesized mainly from precursors generated via the shikimate pathway. The IAA  

precursor  L-Trptophan is synthesized from chorismate, the final product of the shikimate pathway. 

Although, L-Trp dependent biosynthesis of IAA is believed to be the  main route of IAA biosynthesis in 

plants, evidence for a tryptophan – independent pathway of IAA synthesis branching from indole-3-

glycerol phosphate  (IGP) also exists (Ouyang et al.,2000) . The genes and  enzymes involved in 

tryptophan- independent  IAA  are still largely  unknown, and   the existence of  this alternative pathway 

is based mainly on feeding studies using stable  labeled IAA  precursors and different   tryptophan 

biosynthesis  mutants(Wright et al., 1991; Normanly et al., 1983) .  In addition, the four-carbon  side 

chain indole-3-butyric acid (IBA) has also been  suggested to function as an endogenous IAA  precursor, 

being converted to IAA in peroxisomes by -oxidation (Starder and Bartel, 2011) . Tryptamine  is found 

in very low  levels compared with IAA   and  L-Trp in plants, and is  believed to be the product of  

tryptophan decarboxylases.  It is possible that TRA could function both as a precursor for IAA and  in  

indole alkaloid and serotonin biosynthesis in different plant  species (Mano and Nemoto, 2012) . Indole-

3-acetamide is present in many plant species, and IAM hydrolases convert IAM to IAA (Nemoto et al., 

2009). L-trp also acts as a precursor of camalexin (CAM) and  indole glucosinolates (IGS) (Normanly, 

2010)  and perturbations in these pathways have been shown to affect IAA biosynthesis, thus highlighting 

the  link between auxin biosynthesis and the biosynthesis of IGS (Novak et al., 2012) . The cytochrome  

P450 mono-oxygenases  CYP79B2 and CYP79B3 catalyze   the conversion of L-Trp  to IAOx (Sugawara 

et al., 2009) (Figure 2) . 

 

HOMEOSTASIS AND CATABOLISM 

Homeostatic mechanism  operating in plant cells to maintain auxin level by conjugation (mainly to amino 

acids and sugars) and by degradation (Normanly, 2010; Rosquete et al., 2012). IAA  conjugates are either  

reversible or irreversible storage compounds,  although the function of IAA conjugates, and the genes that 
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regulate  their formation is  still under investigation (Figure 3). The metabolites  2-oxoindole-3-acetic acid 

(oxIAA) and oxIAA-glucose (oxIAA-Glc) are the major degradation products of IAA (Novak et al.,2012) 

, but  the genes involved in IAA catabolism have so far not been identified (Figure 4). 

 

 

 
Figure 2: Auxin biosynthesis 

 

 

LOCALIZATION OF AUXIN METABOLISM 

The localization of  enzymes involved in IAA biosynthesis, conjugation and deconjugation suggests that 

different sub-cellular  compartments are involved in IAA metabolism as well as in the storage of these 

compounds. Both the shikimate and L-Trp biosynthesis  pathways are believed to be localized  to  

plastids, based on protein  localization studies and  the presence of specific plastid transit peptides in the  

enzymes involved in these pathways (Mano and Nemoto, 2012) . By contrast, the pathways downstream 

of L-Trp are believed to be localized to the cytosol. Some suggested the enzyme can be localized both to 

the cytosol and to the cytosolic face of the ER membrane.  Several IAA-amino acid conjugate  hydrolases 

have been shown to be located at the ER(Woodward
 
and Bartel, 2005) .  Vacuoles and the apoplast could 

be important for metabolism, storage and transport of IAA and its different IAA  metabolites (Figures 

5&6). 
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Figure 3: Auxin conjugation 

 

 
Figure 4: Auxin degradation 
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Figure 5: Localization of auxin metabolism (Jutta Ludwig-Müller, 2011). 

 
Figure 6: Auxin metabolism 

 

AUXIN TRANSPORT 

Auxins are weak organic acids, the carboxyl group is protonated at low pH, making the molecule less 

polar (IAA
-
 + H

+
  = IAA-H). In  this form it can diffuse across cell membranes, whereas the molecule in 

its unprotonated  negatively  charged form (IAA
-
) is too polar to diffuse. The pH in different cellular 

compartments varies, being  5.0-5.5 in the apoplstic fluid of the cell wall and in  vacuoles and   7.0 in the 

http://jxb.oxfordjournals.org/content/early/2011/02/09/jxb.erq412/F3.expansion.html
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cytosol. IAA-H in the apoplast  and in vacuoles can thus diffuse over the surrounding   membrances, 

whereas IAA
-
 is trapped within the cell and cannot escape from the cytosol without the aid  of specific  

transporters(Rosquete et al.,2012) .  Two families of IAA efflux carrier proteins have been   identified 

(PIN  and ABCB).  There are also specific IAA influx carrier proteins  such as the AUX1/LAX family, 

which are important for increasing IAA transport into specific cell types(Swarup and Peret,2012). A new 

group of transport   proteins -  the PINLIKES or PILS proteins, were identified  and are postulated to have 

a function in IAA transport between the cytosol and the ER(Barbez et al.,2012) . The  localization of 

influx and efflux carriers at the plasma membrane directs the  transport of IAA in and out of  the cells. 

Auxins  stimulates cell  elongation by stimulating wall loosening factors, such as elastins, to loosen cell 

walls(Figure 7). 

 

 
Figure 7: Auxin polar transport in cells 

 

 The effect is stronger if   gibberellins are also present.  Auxins also stimulate cell division if cytokinins 

are present. When auxin and cytokinin are applied to callus, rooting can be generated if the auxin 

concentration is higher than  cytokinin. Xylem tissues can be generated when auxin concentration is equal 

to cytokinin. Auxins also induces sugar and mineral accumulation at the site of application. It had been 

noted that there is importance of interactions of auxins with non-hormones in cell  differentiation,  such as 

auxin and sugar (vascular tissue),  auxin and low sugar (xylem),  auxin and high sugar (Phloem), auxin 

and moderate level of sugar (xylem and  phloem).  The coordination of cell repair, DNA replication, cell 

division, and cell elongation processes  necessary  for rooting of cuttings requires the  investment of 

considerable energy and structural carbohydrates (Husen, 2008) , and the production of 

proteins(Hutchison et al.,1999) . These are more of a supportive role of root growth rather  than initiation. 
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Sucrose was transported for use in cell repair and cell division, establishing the wounded tissue as a sink,  

which require  transporters. 

In addition, adventitious root formation is generally promoted by auxin, and auxin signaling and transport 

has been shown to control plant root length, number of adventitious roots, root hair and root growth 

direction . Nag et al.(2001) reported that auxin was an essential factor for induction rather than initiation 

of roots in plants, which verified the hypothesis that the adventitious root formation initially occurred in 

two phases: an auxin-sensitive phase and an auxin-insensitive phase . As a synthetic auxin, NAA is 

commonly used at relatively low dose to elicit auxin-type responses in cell growth, cell division, fruit 

setting, rooting, etc . The adventitious root production was increased rapidly at lower NAA concentration, 

while the number of roots was decreased at higher concentration.  

The activities of enzyme in the rooting zone of cuttings provided an easy, fast and reliable means of 

assessing cellular differentiation into roots. Sato et al.
 
(1993) reported that a particular peroxidase 

catalyzed the process of cell wall lignification during rooting in Zinnia cuttings. Polyphenol oxidase 

catalyzes the oxidation of polyphenols and the hydroxylation of monophenols and lignification of plant 

cells in trees . Furthermore, an auxin-induced change in peroxidase and IAAOxidase occurred during the 

rooting processes. 

Coordinated DNA  replication and  cell division was necessary for the development of new meristems 

(Sedira et al.,2007). Brinker et al.(2004)  identified cyclin-dependent kinases, CDC2,  which was 

upregulated  during rooting of cuttings of Pinus contorta. CDC2 may have a role in establishing cell 

division competence for  organogenesis(Brinker et al.,2004) . Auxin induced organogenesis  is also 

mediated by cytokinins by inhibiting proteinase  inhibitor(PIN) auxin efflux   carriers (Laplaze et 

al.,2007) .  Auxin molecules present in cells may trigger responses directly through stimulation or 

inhibition of the expression of sets of genes or by means independent of gene expression.  Auxin 

transcription ally activates four different facilities of  early genes, so called because the components 

required for activation are pre-existing,  leading to a rapid response. The  families are  glutathiones –

transferases, auxin homeostasis proteins like GH3. SAUR genes are of currently unknown function, and 

the Aux/IAA repressors.  The Aux/IAA repressors are  leading to auxin induced changes of gene 

expression. This pathway involves the protein  families  TIR1 (transport  inhibitor response 1), ARF 

(auxin response factor), Aux/IAA  transcriptional repressors,  and the  ubiquitin ligase complex that is a 

part of the  ubiquitin-proteasome protein degradation pathway. ARF proteins have DNA  binding domains 

and can bind   promoter regions of genes and activate or repress gene expression. Aux/IAA proteins can 

bind ARF proteins  sitting on gene promoters and prevent  their activities. TIR1 proteins are F-box 

proteins that have three different domains giving them the ability to bind to  three different ligands : an 

SCF ubiquitin  ligase complex (using the  F-box domain), auxin (so TIR1 proteins are auxin receptors), 

and  Aux/IAA proteins (via a degron domain). Upon binding of auxin, a TIR1 protein’s degron domain 

has  increased   affinity for Aux/IAA repressor proteins, which when bound to  TIR1 and its SCF  

complex undergo ubiquitination and subsequent degradation by a  proteasome. The degradation of 

Aux/IAA proteins frees ARF proteins to activate or repress gene at  whose promoters they are bound. 

Within a plant system, elaboration of the Aux/IAA repressor pathway takes place via diversification of 

the  TIR1, ARF and  Aux/IAA protein families. Each family may continue many similar acting proteins, 

differing in qualities such as  degree of  affinity for partner proteins, amount of activation or repression of 

target gene transcription, or domains of expression. 

 

Another protein, auxin-binding protein 1(ABP1), is a  putative receptor for a different signaling pathway, 

but  its role is as yet unclear. Electrophysiological experiments  with protoplasts and anti ABP1 antibodies 

suggested –ABP1 may   have a function at the plasma membrane, and cells can possibly use ABP1 

proteins to respond to auxin through means  faster and independent of gene expression. 

In  response  to  excision,  a  new  developmental  programme  is  initiated  in  particular  responsive  cells  

in  the  stem  base  near  the wound, ultimately leading to the regeneration of a new root system. 
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Depending on the plant and type of explant, diverse cell types,  here  referred  to  as  AR  source  cells,  

may  generate  ARs  (Altamura,  1996).  AR  formation  in  stem  tissues  has  repeatedly  been  observed  

to  originate  in  the  cambium  or  vascular  tissues,  where it involves sequential phases (da Costa et al., 

2013). The initial phase, generally referred to as the induction phase, is char-acterized as an anatomical 

lag phase devoid of cellular changes, during  which  the  initial  cell  reprogramming  occurs.  If  the  AR  

source  cells  are  root-competent  already,  they  can  be  fate-con-verted directly to AR root founder cells 

by a root-inducing signal. However,  often  the  cells  from  which  AR  starts  first  have  to  ac-quire  

root  competence  involving  dedifferentiation  before  they  can respond to a root-inducing signal 

(Altamura, 1996; Ikeuchi et al., 2016). After determination of AR founder cells, the initiation of ARs 

starts with qualitative changes in cell structures, fol-lowed by cell division and differentiation of the new 

cell clusters into dome-shaped root primordia. The final expression phase be-gins with the differentiation 

of primordia into the complete root body, with differentiated vascular bundles connected to the vas-cular 

cylinder of the stem, followed by the emergence of roots. that  auxin  is  an  effective  inducer  of  AR  

formation  (Pacurar et al., 2014). Polar auxin transport (PAT) plays a crucial role in controlling the level 

of indole-3-acetic acid (IAA), which is the major active auxin, and is of highly dynamic nature. The regu-

lation of PAT involves auxin influx transporters of the AUXIN1 (AUX)  and  LIKE-AUX1  (LAX)  

types,  efflux  carrier  proteins  of  the  ATP-binding  cassette  (ABC)  and  PIN-FORMED  (PIN)  

families, and PINOID family kinases that control the intracellular localization of PINs (Bennett et al., 

2014; Geisler et al., 2017). Studies on petunia (Petunia hybrida) cuttings revealed early IAA  

accumulation  in  the  stem  base  as  dependent  on  PAT  and  essential  for  subsequent  AR  formation  

(Ahkami et  al.,  2013), and   highlighted   the   excision-induced   transcriptional   fine-tuning  of  the  

auxin  transport  machinery  that  involved  auxin  transporters as well as PINOID kinases (Druege et al., 

2014). Reviewing these findings in context with other related studies, Druege et al. (2016) postulated a 

model where PAT and cutting off from the basipetal auxin drain are considered as important principles 

generating early accumulation of IAA in the rooting zone.  Further  being  linked  to  wound-induced  

biosynthesis  of  jasmonic acid (JA) and ethylene (ET), IAA accumulation was suggested to trigger self-

regulatory canalization and maximiza-tion  to  responding  target  cells,  there  inducing  the  programme  

of AR formation.The important roles of PAT and auxin allocation to particular cells as principles of AR 

induction and subsequent AR differen-tiation were highlighted in arabidopsis (Arabidopsis thaliana) by 

tissue-specific monitoring of molecular factors that control auxin homeostasis and by functional analysis 

of target genes in mutants. In the hypocotyls of de-rooted seedlings, early auxin maxima were identified 

via pGH3-2:GUS in pericycle cells as sites  of  subsequent  AR  primordium  formation,  whereas  AR  

formation was reduced by mutations of PIN1, PIN3, PIN7 and ABCB19  (Sukumar et  al.,  2013).  In  

isolated  TCLs  and  intact  hypocotyls, a local auxin maximum is first initiated in the root founder cells 

and thereafter directed to the tip of the developing AR  meristems  (Della  Rovere  et  al.,  2013). The 

DR5-reported maximum  of  auxin  perception  follows  a  co-ordinated  expres-sion of LAX3 and of 

PIN1, while the signals are reinforced by exogenous auxin (Della Rovere et al., 2013). 

 Under low auxin levels, specific auxin/IAA (Aux/IAA) proteins recruit TOPLESS (TPL) to exert their 

repressive function on  specific  AUXIN  RESPONSE  FACTORS  (ARFs),  which  are  transcriptional  

regulators  of  auxin-responsive  genes.  IAA  directly  binds  to  the  TRANSPORT  INHIBITOR  

RESPONSE  1/AUXIN-SIGNALLING  F-BOX  (TIR1/AFB)  component  of  the  SKP/CULLIN/F-BOX  

(SCF)–TIR1/AFB  complex  and  to  Aux/IAA repressor proteins. This allows the ubiquitination and 

subsequent  proteasomal  degradation  of  Aux/IAA  proteins  so  that the ARFs are released from 

repression. Aux/IAA proteins further  provide  cross-nodes  to  other  plant  hormones  such  as  CKs,  

ET,  JA  and  brassinosteroids  (reviewed  in  Druege et  al., 2016). In  petunia  cuttings,  genes  of  the  

AIL  and  GRAS  families,  such  as  PLT-, SHR- and SCR-like TF genes, are upregulated during AR for-

mation (Bombarely et al., 2016). 

The findings  further  strongly  suggest  the  downstream  involvement  of  TFs  of  the  families  of  

GRAS,  AP2/ERF  (in  particular  PLT)  and  WOX  (in  particular  WOX11  and  WOX5)  and  indicate  
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an  important  role  for  auxin-mediated  GH3  regulation  in  adjusting  the IAA pool to the different 

requirements of AR induction and AR differentiation (Figure 8).  

 
Figure 8: Model for physiological changes in rooting of cuttings (from Druege et al., 2019). 

 

 

GENETIC ASPECTS 

The cyclin  Cyc B2 may prove an important marker of cell division since it was expressed early in the 

pericycle in cells that will  develop into lateral roots (Beeckman et al., 2001)  and  adventitious roots 

(Akhami et al.,2009) , but the gene itself was not expressed  in primary roots (Porcedu et al.,1999). 

Brinker et al.(2004) also identified the upregulation of a gene closely related to gene from  Arabidopsis 

AG01, that was first identified  as essential for normal  leaf development (Bohmert et al., 1998). AGO1 

mutants (ago1) were defective in light-regulated hypocotyls elongation and adventitious rooting, 

indicating that a properly functioning of AGO1  was necessary for auxin homeostasis and for processes 

specific to rooting of  cuttings (Sorin et al.,2005). AGO1  was a critical element in micro-RNA mediated 

regulation of gene silencing, because AGO1 was a principal component of RNA-induced silencing  

complex (Hammond et al., 2001) . AGO1 has been shown to regulate rooting of cuttings by influencing 

the expression of ARF17 and through ARF17, GH3 genes (Sorin et al., 2005). GH3 can be regulated by 

both light and auxin (Hsieh et al., 2000) , and accumulation of GH3 is positively related  to  rooting, 

possibly that GH3 can adenylate auxins. 

Both SCL and SHR act within the first 24h after auxin  treatment  during dedifferentiation but before cell 

division. It is noted  that SCL was induced by exogenous auxin, but expression of SHR was auxin 

independent (Gutierrrez et al., 2009). The SHR/SCR pathway apparently regulates root pattern promotion 

independently that of AGO1 pathway (Shunsuke et al., 2009).  Hasbun et al. (2007) found that aging  

implied a progressive  increase of methylated 5-deoxycytidines but it is not very much clear. Methylation 

of an allele of the purple-plant1 gene called PI-Blotched  increased during the  juvenile-to-adult transition, 

was maximal in mature leaves.  Irish and McMurray (2006)  investigated the same gene using an in vitro 

system, and found that rejuvenated  shoot apices were hypomethylated, indicating the reversion of phase 
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is due to loss of methylation. Studies suggest a  converse  regulatory relationship between   micro  RNAs  

MIR156 and  MIR172. The level of MIR156 was  high and level of MIR172 was low during  juvenile 

phase, but was vice versa during  mature phase (Chuck et al.,2009).  The GH3 class of auxin early 

response genes was  probably  regulated by ARF17, ARF17 was however appears to be  negatively 

regulated by micro RNAs MIR 160 and MIR 167 in concert with AGO1, as mentioned.  These two micro 

RNAs  also positively regulates ARF6 and ARF8 (Gutierrez et al., 2008) , thus setting up a system where 

ARF17 and ARF 6/8 are maintained in a dynamic balance auxin homeostasis to determine the cell status. 

Mutations in two other ARFs  via. NPH4/ARF7 and ARF19, also led to loss of rooting (Wilmoth et 

al.,2013)  light can regulate ARF 6/8 and other ARFs at both transcriptional and post transcriptional level 

by affecting  the maturation of MIR160 and MIR 167 (Gutierrez et al., 2008). Micro RNA MIR 164 

responds to auxin induction and participates in the regulation of NAM/ATAF/CUC (NAC)  domain 

transcription factor proteins. 

By using a microarray of 2,178 cDNAs, Lindroth et al. (2001a,b) identified  220 genes that were 

differentially  expressed during root  development, with most of the genes (121) differentially expressed 

within 3  days of wounding and   initial auxin  treatment. Transcriptional profiling  of the first  3 days 

after auxin treatment showed an increase in expression of genes for protein synthesis and   decrease in 

genes for protein  degradation. The reverse   happens when the root is formed. They found that on ATP-

binding cassette (ABC) transporter, a gene  typically repressed by auxin, was upregulated when the   

meristem  was  formed. Kohler et al. (2003)  generated  7,013 ESTs from the adventitious roots of hybrid 

cottonwood at different  stages of process suggesting that  aquaporins and transporters  were differentially 

expressed in the process of rooting of cuttings. 

 
 

Figure 9. Assumed gene networks that regulate AR formation in blueberry green cuttings. Note: 

AR, adventitious root; ARF7/9, Auxin responsive factors 7/9; LBDs, Lateral organ boundaries domain; 

AUX22, Auxin induced protein 22; PIL6, PIN-LIKE 6; LRP1, Lateral root primordium 1; RGF9, root 

meristem growth factor 9; and DRMH3, Dormancy-associated protein homologue 3(from An et al.,2020) 

 

According to the known regulatory networks reported previously for root formation in Arabidopsis and 

other plant species, the regulatory pathway that controls blueberry AR formation was derived. It was 

speculated that auxin would induce the expression of auxin responsive factors ARF7/9 to perceive auxin 

signalling, whereas ARF7/9 directly or indirectly affected the downstream target LBDs genes to establish 

AR founder cells with nuclei migration. Then, auxin polar carriers, including influx carriers AUX22 or 
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LAX3/5 and efflux carriers PIL6s, would be upregulated to facilitate the establishment of auxin 

asymmetric distribution, which includes AR primordium formation. Finally, the AR primordium 

transforms to the AR apical meristem and outgrowth from the cuttings under the effect of LRP1, RGF9, 

DRHM3 and other genes (Figure 9). 

 

CONCLUSION 

Auxin action is still unclear .There are many gaps in our knowledge and deep understanding, though 

much advancement had been made so far. Besides thorough genetic and molecular studies of the process 

involved, system biology and modeling approaches are necessary for deepening our understanding of 

auxin action and regulatory  networks  in rooting of stem cuttings. 
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