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ABSTRACT 

Metabolic adjustment to cope with drought stress in tuberous roots of Asparagus racemosus was 

evaluated. A significant rise in activities of antioxidant enzymes (superoxide dismutase and catalase) and 

non-antioxidant enzymes (α-amylase and acid phosphomonoesterase) were noted with increasing period 

of drought treatment. Over and down-expression of other metabolites (reducing sugars, starch, soluble 

protein and proline) also indicates high potential of drought tolerance in tuberous roots of A. racemosus to 

survive under severe drought in a state of quiescence, when the above-ground vegetative tissues desiccate 

and die. The findings provide biochemical basis of drought tolerance in succulent- and semi-succulent 

plants of arid and semiarid regions. 
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INTRODUCTION 
Drought stress is one of the main abiotic stresses that negatively influence the growth, development and productivity 

of plants. Plant adaption to drought relies on natural strategies mainly related to: (1) increase of water uptake and 

storage; (2) reduction of water loss during dry periods; and (3) mechanical reinforcement of tissues to prevent 

wilting. Plants grown in arid and semi-arid regions are quite resistant to extreme drought and are well developed 

morphologically as well as physiologically to survive through such conditions. These plants cope with drought stress 

by manipulating key physiological processes such as photosynthesis, respiration, antioxidant and hormonal 

metabolism. At arid and semi-arid conditions, plant survival depends upon the ability to harmonize structure and 

function to withstand desiccation without permanent damage. Therefore, every plant organ of these regions is ideally 

designed during the evolution to fulfill metabolic and physiological processes in adverse environmental conditions.  

Asparagus racemosus Willd. (Asparagaceae) is one of the important medicinal plants of arid and semi-arid areas. 

The underground tuberous roots of A. racemosus are adapted to survive under severe drought in a state of 

quiescence, when the above-ground vegetative tissues desiccate and die. A. racemosus represents a special type of 

resurrection geophyte, which survives under unfavorable environmental conditions in the form of underground 

succulent tuberous roots, and is ecologically adapted to harsh drought condition. It may provide a useful model plant 

for investigating mechanisms of plant adaptations to severe drought conditions of arid and semi-arid regions. The 

present was undertaken to access the metabolic adaptation in tuberous roots of A. racemosus subjected to water 

deficit condition. 

 

MATERIALS AND METHODS  

Plant Materials and Growing Conditions: One year old plants of A. racemosus, growing in pots at 

research nursery, School of Life Science, Jaipur National University, Jaipur, were used for the 

biochemical studies. The plants were divided into two sets (each of four plants), out of which one set was 

subjected to water stress by withholding of water supply till wilting symptoms appeared, while the second 

set was watered regularly and served as a control. Biochemical analyses of enzymes and cellular 

metabolites were carried out in tuberous roots of A. racemosus. The samples were collected regularly at 

an interval of three days till day 21 (Fig. 1 A-H).  

Biochemical assay: The activity of superoxide dismutase (SOD) was assayed following the method of 

Kono (1978). Catalase (CAT) activity was determined by the method of Teranishi et al. (1974). 
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Bernfeld's method (1955) was used for assaying the activity of α- amylase. The activity of acid 

phosphomonoesterase was assayed by using p-nitrophenyl phosphate as substrate (Zink & Veliky, 1979). 

Reducing sugar was analyzed by the method proposed by Fu and Dernoeden (2008). Starch was measured 

by the method described by McCready et al., (1950). Bradford’s method (1976) was used for the 

estimation of soluble proteins. Free proline content was measured by the method given by Bates et al., 

(1973).  

Experimental design and statistical analysis: All experiments were conducted with a minimum of 30 

replicates per treatment and each experiment was repeated thrice. The data were analyzed statistically by 

one-way analysis of variance (ANOVA) followed by Tukey’s test at P=5% using SPSS software version 

17.0 (SPSS Inc., Chicago, IL, USA) and data represented as mean ± standard error (SE). 

 

 
Figure 1: Tuberous roots of A. racemosus. (A) control, (B) Drought stress 

at 3 days, (C) 6 days, (D) 9 days, (E) 12 days, (F) 15 days, (G) 18 days, and 

(H) 21 days of water deprivation 

 

RESULTS AND DISCUSSION 
Drought is the major yield-limiting factor of plants and determines the natural distribution of plant species. During 

water deficit conditions, concentration of reactive oxygen species (ROS) increases several folds, which oxidize 

multiple cellular components like proteins and lipids, DNA and RNA. In order to minimize ROS production, plants 

have ROS scavenging mechanism consisted of various enzymatic and non-enzymatic antioxidants. In present study, 

SOD activity was increased continuously in the roots of A. racemosus subjected under water deficit condition (Fig. 

2A). Higher activity of SOD enzyme was recorded in roots on day 21. Similar results were also obtained in wheat 

(Badiani et al., 1990), in pea (Mittler & Zilinskas, 1994), in common and tepary bean (Turkan et al., 2005), rice 

(Sharma and Dubey, 2005) and in olive trees (Sofa et al., 2005), where water stress increased SOD activity. On the 

other hand, in sunflower seedlings and in grass plants (Aegilops squarrosa) a decrease in SOD activity was observed 

under drought stress (Quartacci and Navari-Izzo, 1992). Over expression of SOD indicates high oxidative stress 

tolerance in tuberous roots of A. racemosus. CAT activity remains unchanged till day 9 of water deprivation (Fig. 

2B). Severe drought treatment caused a significant rise in activity of CAT enzyme which suggests that under mind 

and moderate drought stress H2O2 scavenging is preferably made by ascorbic acid through the ascorbate/glutathione 

cycle. 

Drought stress significantly increased the activity of α-amylase enzyme in roots of A. racemosus. Maximum enzyme 

activity was recorded on day 12 in the roots (Fig. 2C). On the other hands, the variation in α-amylase activity in the 

plants growing under normal irrigated condition was insignificant. Increased amylase activity has been linked to 

increased maltose content (Nielsen et al., 1997], and its levels are modulated in response to drought (Yang et al., 

2007), salt (Datta et al., 1999), and heat stress (Sung, 2001). Mild drought stress could not change the activity of 
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acid phosphomonoesterase enzyme. A marginal increased in enzyme activity was observed on day 9 of water 

deprivation. Highest acid phosphomonoesterase activity was observed on day 21 (Fig. 2D). 

  
Figure 2: Drought-induced changes in (A) SOD, (B) CAT, (C) α-amylase, (D) 

acid phosphomonoesterase, (E) reducing sugar, (F) starch, (G) soluble protein 

and (H) proline in A. racemosus 
 

The accumulation of soluble carbohydrates in plants has been widely reported as a response to salinity or drought, 

despite a significant decrease in net CO2 assimilation rate (Murakeozy et al., 2003). Accumulation of sugar in 

different parts of plants is enhanced in response to the variety of environmental stresses (Prado et al., 2000). In the 
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present study, the accumulation of reducing sugar in response to water deficit condition, seem to play an important 

role in the drought tolerance in A. racemosus (Fig. 2E). The starch content reduced in roots when plants were 

exposed to the severe drought stress condition (Fig. 2F). Reduction in starch might be due to enhanced α-amylase 

activity. Soluble protein level was initially increased and then sharply declined in the roots of A. racemosus plants 

subjected to the drought stress (Fig. 2G). Decrease in protein under water stress might be due to the effect on the rate 

of protein synthesis. Under water stress, decrease in soluble proteins was also reported in rice Phaseolus (Ignacio 

and Carol, 1999) and Oak and Pine (Schwanz and Polle, 2001). Proline content accumulated significantly in 

tuberous roots of A. racemosus growing under water deficit conditions (Fig. 2H). In roots, higher accumulation of 

proline was recorded on day 12 of water deprivation. Increased amount of proline under drought indicates its role as 

osmoprotectant. The results of present study clearly indicate that tuberous roots of A. racemosus are biochemically 

well adapted through metabolic adjustment to survive under severe drought in a state of quiescence, when the 

above-ground vegetative tissues desiccate and die. The findings provide basic understanding of drought tolerance in 

succulent- and semi-succulent plants of arid and semiarid regions. 

The present study describes biochemical basis of drought tolerance in tuberous roots of A. racemosus. 

Understanding drought-induced metabolic adjustment in succulent tuberous roots of A. racemosus will be highly 

beneficial in development of transgenic plants for arid and semiarid regions. 
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