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ABSTRACT 

Exogenous application of calcium plays an important role in antagonizing deleterious effects of cadmium 

induced toxicity in mungbean seedlings. An interaction of the two ions prevent losses in root and shoot 
growth and chlorophyll pigments, thus alleviating Cd induced heavy metal toxicity. Calcium plays a 

significant role in alleviating Cd induced toxicity probably restoring uptake of water through vascular 

tissues, chlorophyll biosynthesis and accumulation of biomass. The presence of Cd in the root tissue 
surroundings has its residual effects particularly when calcium is used in lower concentrations. The 

efficacy of Ca
+2

 is more with higher doses (80 µM) in an amalgam and plays a significant role in 

neutralizing Cd toxicity. 
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INTRODUCTION 
Heavy metals are amongst important environmental pollutants and their induced toxicity is a serious 

social concern for our environment (Tran and Popova, 2013). Uptake and subsequent accumulation of 

heavy metals such as cadmium is deleterious for both plants and animals. Compared with other metals, 
Cd has a higher tendency to accumulate in plant tissues (Kabata-Pendias and Pendias, 1992; Lux et al., 

2010). Cadmium being a non-essential element negatively affects plant growth and development (OSHA, 

2004). Due to its higher solubility in water and more toxicity the pollutant gains more significance (Pinto 

et al., 2004). This metal ion enters agricultural soils from pesticides, industrial effluents, phosphate 
fertilizers and atmospheric deposition which finally lead to transport of this heavy metal to the food chain 

(Jain et al., 2007). It affects many physiological processes, such as, membrane functions by changing the 

fatty acid composition of the lipids (Djebali et al., 2005), nitrogen metabolism (Chaffei et al., 2003), 
oxidative stress through increased proteolytic degradation (Romero-Puertas et al., 2002) and lipid 

peroxidation (Sandalio et al., 2001).  

Plant alters various mechanisms in response to stimuli to adapt in the new environment (Reddy et al., 

2011). Abiotic stresses like salt, metal, water and heat induce changes in calcium levels (Takano et al., 
1997) which plays an important role in stress tolerance of plants (Tuteja and Sopory, 2008; Mansoor and 

Baig, 2014). Calcium is a ubiquitous signaling molecule and changes in cytosolic Ca
+2

 are involved in 

plant responses to various stimuli (Komatsu et al., 2007). Cd uptake was significantly reduced by calcium 
in Asiatic calms (Qiu et al., 2005). Ca

+2
 pre-exposure played a role in mitigating severity of Cd-induced 

toxicity in Synechogobius hasta (Song et al., 2013). Increased calcium levels in the soil limits absorption 

of heavy metals (like cadmium and lead) and stimulates biomass productivity in Salix viminalis (Mleczek 
et al., 2011). 

The transport of Ca
+2

 can be competitively impeded or displaced by other elements, especially bivalent 

cations such as heavy metal Cd
2+

 ions which are toxic to plants. Uptake of Cd
2+

 ions competes with the 

active trans-membrane carriers such as Ca, Mg, Mn, Cu, and Zn (Korshunova et al., 1999; Connolly et 
al., 2002). The coexistence of essential and non-essential elements in the ecosystem leads to additive, 

antagonistic and/or synergistic interactions (Siedlecka, 1995).  

Looking at the importance of antagonistic interaction of ions, it was thought worthwhile to study the role 
of Ca

+2
 in alleviating Cd

2+
 induced toxicity affecting leaf physiology and growth of mungbean seedlings. 
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MATERIALS AND METHODS  

Seeds of munbean (Vigna radiata L. Wilczek cv. mung 666 were procured from Punjab Agriculture 

University, Ludhiana, Punjab and inoculated with standard rhizobial broth cultures. Seeds were surface 
sterilized with 0.1% HgCl2 (Mercuric Chloride) for 2 minutes and washed thoroughly with distilled water 

before germination in petri-plates at 28±2°C in the presence of 60 µM cadmium (CdSO4) alone and in 

presence of 20, 60 and 80µM calcium (CaCl2) in laboratory under control conditions (13 h light and 11 h 
dark cycle). The seedlings irrigated with distilled water only served as control. The morphological and 

physiological data was noted for the growth of root and shoots, analysis of leaf chlorophyll parameters on 

10
th
 day of seedling after sowing.  

Chlorophyll parameters like Chl a, Chl b and Carotenoids were assayed by following method of Arnon 
(1949). The chlorophyll was extracted with 80% acetone repeatedly to ensure complete extraction and the 

absorbance was read at 645nm, 663nm and 665nm against 80% acetone. Phytotoxicity index was 

calculated according to Chou and Muller, 1972. 

 

RESULTS AND DISCUSSION 

Results and Observations 
Leaf Pigments: Mungbean seeds were allowed to germinate in the presence of 60µM Cd alone and in 

combination with Ca 20, 60, 80µM. The morphological observations on the growth of seedlings revealed 

interaction of both the ions in an amalgam. Total chlorophyll content of leaves decreased significantly in 

the presence of heavy metal Cd (both Chl a & Chl b= -69%). The presence of Ca
+2

 in amalgam 
surprisingly prevented this loss of chlorophyll content. Such losses in the green pigment were least with 

higher doses of calcium. A linear and positive correlation was observed between chlorophyll content and 

calcium concentration. Chlorophyll a (-45.1, -5.6, -4.2%) and chlorophyll b (-43.5, -4.3, +8.7%) losses 
reduced by using Cd+Ca20, Cd+Ca60, Cd+Ca80, respectively and the pigments were almost near to 

unstressed seedlings particularly in case of Cd60+ Ca80 treatment. The toxicity effect of Cd treatment 

almost got neutralized with Cd60 µM and Ca80 amalgam (Figure 1).  

 

 
Figure 1: Effect of Cadmium alone and in combination with Calcium on different leaf pigments in 

mungbean seedlings 

 
Another chlorophyll pigment molecule, carotenoid was to its maximum level in control seedlings 

followed by a sharp and drastic decline (-68%) in presence of Cd60 treatment. Similarly as in case of 

chlorophyll a and b, loss of carotenoids was checked with an amalgam of Cd and Ca ions together. The 
efficacy of the amalgam was more when ratio of Ca

+2
 was higher (losses in pigment lowered to -43.4, -

6.6, -1.7% in comparison to control with Cd+Ca20, Cd+Ca60, Cd+Ca80, respectively). Loss of pigment 
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was almost negligible by maintaining level as in unstressed seedlings with Cd60+Ca80 treatment (Figure 

1).  

Root and Shoot Length: The growth of mungbean seedlings reduced in comparison to control with heavy 
metal Cd60 application. Retardation in the length of roots and shoots was 29-30%. Calcium played a 

significant role in alleviating effect of cadmium by lowering retardation to -29.0, -20.3, -11.6% (roots) 

and -20.2, -14.2, -5.5% (shoots) using Cd+Ca (20, 60, 80uM) amalgum. The efficacy of Ca
+2

 was more 
when used in higher doses (80 µM). The reduction in fresh mass of roots was comparatively more than 

the above ground parts probably absorption of the heavy metal affecting uptake of water and other 

minerals (Figure 2).  

 
Figure 2: Effect of Cadmium alone and in combination with Calcium on root and shoot length of 

mungbean seedlings 
 

Phytotoxicity Index: Induced toxicity of the heavy metal was measured for both above and underground 

parts. PI was calculated as 29-30% with Cd exposure of the seedlings. Interaction of two ions Cd+Ca 
(Cd+Ca 20, 60, 80uM) reduced toxicity index to 28.9, 20.3, 60.0% (roots) and 20.0, 14.5, 5.44% (shoots), 

respectively. Calcium, thus, played a significant role in mitigating heavy metal Cd induced stress. The 

lowering of phytoxicity index was more rapid and effective in case of above ground parts (shoots) 
indicating that the presence of heavy metal Cd in near vicinity of root tissues did not allow early recovery 

specifically when Ca is used in lower concentrations in the amalgam (Figure 3). 

 
Figure 3: Effect of Cadmium alone and in combination with Calcium on phytotoxicity index (PI) in 

root and shoots of mungbean seedlings 
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Discussion 

Growth parameters are sensitive to the presence of heavy metals in higher plants (Arun et al., 2005). Our 

studies have clearly illustrated that cadmium retard growth of the plants. Calcium played a significant role 
in alleviating heavy metal Cd induced toxicity. Roots being the first organs receiving the Cd

+2
 are affected 

more subsequently leading to its accumulation (Drazkiewicz et al., 2003). Cd toxicity in plants disturbs 

mineral-nutrient homeostasis (Kinraide, 1998). Cadmium uptake and accumulation in oilseed rape was 
dependent on calcium nutrition ending up with more uptakes when calcium not present in the 

environment (Wan et al., 2011). Cadmium and calcium ions interact influencing each other’s 

accumulation in roots and stem of Norway spruce (Osteras and Gregar, 2006). 

General symptoms like chlorosis of the foliage were reported with cadmium. The determination of total 
chlorophyll is a reliable marker of cadmium toxicity in higher plants (Krupa et al., 1996). Cadmium 

inhibits chlorophyll content in several plant systems (Singh et al., 1988; Parekh et al., 1990; Vassilev et 

al., 1998).  In addition to inhibition of chlorophyll biosynthesis, chlorophyll degradation, disorganization 
of chloroplasts, a decreased number of photosynthetic membranes and oxidative stress can also be the 

reasons for reduced chlorophyll content (Rascio et al., 2008; Gonclaves et al., 2009). Cadmium treated 

soybean seedlings showed reduced net photosynthetic rate, chlorophyll content and stomatal conductance 
(Xue et al., 2013). Calcium plays a significant role in alleviating heavy metal Cd induced toxicity 

probably restoring uptake of water through vascular tissues, chlorophyll biosynthesis and accumulation of 

biomass. The efficacy of Ca
+2

 was more when used in higher doses (80 µM) in an amalgam. Lowering of 

Phytoxicity index indicates that the presence of Cd in the surroundings of root tissues did not allow early 
recovery when Ca is used in lower concentrations in an amalgam. 
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