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ABSTRACT 

In this paper, we have studied the effect of thermal diffusion with internal heat source on the onset of double 

diffusive convection (DDC) in a binary viscoelastic fluid-saturated sparsely packed porous layer using linear 

stability analysis. The onset criterion for stationary and oscillatory convection is derived analytically. The 

effect of different parameters on both the stationary and oscillatory system has investigated and the results 

have been shown graphically and discussed.  
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1. INDTRODUCTION 

Double diffusive convection in porous media occurs in many systems, and this problem has attracted 

considerable interest over the years due to its numerous fundamental and industrial applications, such as high 

–quality crystal production, liquid gas storage, migration of moisture in fibrous insulation, transport of 

contaminants in saturated soil, solidification of magmas. Extensive reviews of the literature on this subject 

can be found in the books by Ingham (1998, 2005), Vafai (2000, 2005), Vadasz (2008) and Nield (2006). 

With the growing importance of non-Newtonian fluids in modern technology and also due to their natural 

occurrence, the investigations on such fluids are quite desirable. In particular, the flow of viscoelastic fluid is 

of considerable importance in several fields of applications such as material processing, petroleum, chemical 

and nuclear industries, carbon dioxide-geologic sequestration, bioengineering, and reservoir engineering. 

Although the problem of Rayleigh Benard convection has been extensively investigated for Newtonian 

fluids, relatively little attention has been devoted to the thermal convection of viscoelastic fluids (Li and 

Khayat, 2005 and references therein). 

A situation in which a porous medium has its own source of heat can occur through present perspective. A 

relatively weak exothermic reaction which can take place within the porous materials. Internal heat 

generation becomes very important in geophysics, reactor safety analysis, fire& combustion studies and 

storage of radioactive materials. The onset of convection in a horizontal layer of an anisotropic porous 

medium with internal heat source subjected to an inclined temperature gradient was studied by Parthiban and 

Parthiban (1997). An analytical solution for small Rayleigh number in a finite container with isothermal 

walls and uniform heat generation within the porous medium was given by Joshi et al., (2006). Recently, the 

natural convection in a rotating anisotropic porous layer with internal heat generation using a weak nonlinear 

analysis is studied by Bhadauria et al., (2012). The double diffusive natural convection in an anisotropic 

porous layer in the presence of internal heat source is studied by Bhadauria (2012). 

If the cross diffusion terms are included in the species transport equations, then the situation will be quite 

different. Due to the cross diffusion effects, each property gradient has a significant influence on the flux of 

the other property. Aflux of salt caused by a special gradient of temperature is called the Soret effect. 

Similarly, aflux of heat caused by a spatial gradient of concentration is called the Dufour effects. The Dufour 

coefficient is of order of magnitude smaller than the Soret coefficient in liquids, and the corresponding 

contribution to the heat flux may be neglected. Many studies can be found in the literature concerning the 
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Soret and Dufour effects. A study by Rudraiah and Malashetty (1986) discussed the double diffusive 

convection in aporous medium in the presence of Soret and Dufour effects. In another study, Rudraiah and 

Siddheshwar (1998) investigated a weak nonlinear stability analysis of double diffusive convection with 

cross diffusion in a fluid saturated porous medium. Recently, the double diffusive convection in a fluid 

saturated anisotropic porous layer with Soret effect is investigated by Gaikwad and kamble (2012). Also, 

more recently Altawallbeh et al., (2013) have investigated the linear and nonlinear double diffusive 

convection in a saturated anisotropic porous layer with Soret effect and internal heat source.  

It is well known that Darcy’s law is not valid for non-Newtonian fluid flows in porous media. Recently, the 

onset of Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer is studied by 

Swamy et al., (2012), where the modified Darcy-Brinkman-Oldroyd model has been developed. This model 

overcomes not only the shortcomings encountered in the modified Darcy-Oldroyd model but also the 

disadvantages encountered in the Jeffrey’s model. By using a variable porous parameter Da (Darcy number), 

the modified Darcy-Brinkman-Oldroyd model bridges the gap between nonporous cases in which Da →  

and very densely packed porous cases in which 0.Da →  A better understanding of the characteristics of the 

Darcy-Brinkman equation is therefore an important part of more practical problems and thus motivates the 

present report.   

The objective of the present work is to study the onset of double diffusive convection in a horizontal binary 

viscoelastic fluid saturated porous layer with an internal heat source in the presence of thermal diffusion 

effect using a modified Darcy-Brinkman-Oldroyd model by linear stability theory which we intend to 

perform the onset criteria for stationary and oscillatory convection.  

 

2. MATHEMATICAL FORMULATION 

We consider an infinite horizontal sparsely packed, binary viscoelastic fluid saturated porous layer confined 

between the planes 0z =  and z d= , with the vertically downward gravity force g  acting on it. Constant 

temperatures 0T T +  and 0T  with stabilizing concentrations 0ΔS S+  and 0S  respectively are maintained 

between the lower and upper surfaces. A Cartesian frame of reference is chosen with the origin in the lower 

boundary and the z-axis vertically upwards. The modified Darcy−Brinkman−Oldroyd model, which 

includes the time derivative, is employed as a momentum equation (see Swamy et al., 2012). With the 

Oberbeck−Boussinesq approximation, the basic governing equations are 

     0, =q                                                                                                                                                (2.1) 
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2.1. Basic State:  

 

The basic state is assumed to be quiescent and the variables except bq  are functions of z  alone. To study the 

stability of the system we superpose infinitesimal perturbation on the basic state so that the equations 

governing the perturbed quantities are given by  
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2.2. Perturbed State: 

 

By operating curl twice on Eq. (7) we eliminate p   and then use the scaling  
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to non-dimensionalize  equations (6)-(10)I in the form  (on dropping the asterisks ),               
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where  

2

int

T

Qd
Ra


=  is the internal Rayleigh number.  The thermal Rayleigh number characterizes the 

buoyancy due to the thermal gradient and that due to the solute gradient is indicated by the solute Rayleigh 

number. The viscoelastic character of the liquid mixture appears in the relaxation parameter 1  (which is 

also known as the Deborah number) and retardation parameter, 2 . The Deborah number is a ratio of the  

relaxation time of the material to a characteristic time of the process. The parameter 2 0 =  for a Maxwell 

fluid while 1 2 0 = =  for a Newtonian fluid. For dilute polymeric solutions the value of Deborah number is 

most likely in the range [0.1, 2] and 2  in the range [0.1, 1]. It is worth mentioning here that the Darcy-

Prandtl number DPr  includes the Prandtl number, Darcy number, porosity and the specific heat ratio. It 

depends on the properties of the fluid and on the nature of the porous matrix. The Prandtl number affects the 

stability of the porous system through this combined dimensionless group. For the sparse porous media, 
2

10 ,1 , 0.5Da 
−

     and a typical value for the Prandtl number for a viscoelastic fluid is 10.Pr =  Since 

DPr  is magnified by a factor 
1

Da
−

 the reasonable range for DPr  will be [5, 500]. The ratio between 

thermal and solute diffusivities is characterized by the Lewis number and can be varied in the range of [1, 

1000]. The normalized porosity   is expressed in terms of the porosity of the porous medium   and the 

solid to fluid heat capacity ratio,  . Since 0 1,   it is clear that 0 1.          
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     Since the boundaries are assumed to be stress free, isothermal and isohaline; the Eqs. (2.12)−  (2.14)  are  

to be solved for the boundary conditions  
2

2
0

w
w T S
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= = = =
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 at z = 0, 1                                                                                                         (2.15)   

 

 3. LINEAR STABILITY ANALYSIS 

 

In this section we predict the thresholds of both marginal and oscillatory convections. The Eigenvalue 

problem defined by Eqs. (2.12)− (2.14) and subjected to the boundary conditions (2.15) is solved using the 

time-dependent periodic disturbances in a horizontal plane. Assuming that the amplitudes of the 

perturbations are very small, we write    
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Infinitesimal perturbations of the rest state may either damp or grow depending on the value of the parameter

 .  Substituting Eq. (3.1) into the linearized version of Eqs. (2.12)− (2.14), we obtain 
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where D d dz  and 
2 2 2

a l m= + . The boundary conditions (2.15) now becomes 
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We assume the solutions in the form 
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The most unstable mode corresponds to 1n =  (fundamental mode). Therefore substituting Eqs.  (3.2) − (3.4) 

and using the solvability condition we obtain  
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3.1. Stationary State:  

For the validity of the principle of exchange of stabilities (i.e., steady case), we have 0=  (i.e., 0r i = = ) 

at the margin of stability. Then the Rayleigh number at which the marginally stable steady mode exists 

becomes 
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                                                                  (3.8) 

The minimum value of the Rayleigh number 
St

TRa  occurs at the critical wavenumber 
St

ca a=  where 

St

ca h=  satisfies the equation 

          
5 4 3 2

1 2 3 4 5 6 0.s h s h s h s h s h s+ + + + + =                                                                                       (3.9) 

In the absence of a heat source for the sparsely packed porous medium (i.e., when int 0Ra = ) Eq. (3.8) 

reduces to  
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In the absence of Soret parameter (i.e., when 0TD = ) the above Eq. (3.10) reduces to  
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This result exactly coincides with the one given by [8]. When 0,Da →  that is for densely packed porous 

medium Eq. (3.11) becomes 
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which is the classical result for double diffusive convection in a Darcy porous medium [see Nield and Bejan 

(2006)].  For a single component fluid ( 0SRa = ), the expression for stationary Rayleigh number reduces to 

the classical result 

          
( )

2
2 2
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T
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Ra

a

 +
=                                                                                                                         (3.13)  

which has the critical value 
2

4
St

cRa =  for 
St

ca =  obtained by  Horton and Rogers (1945) and Lapwood 

(1948). 

3.2. Oscillatory state:  

We now set ii =  in Eq. (3.13) and clear the complex quantities from the denominator, to obtain 

          1 2 ,T iRa i  = +                                                                                                                           (3.14) 

where 1  and 2  are as given in appendix. Since TRa  is a physical quantity, it must be real. Hence, from 

Eq. (3.14) it follows that either 0i =  (steady onset) or 2Δ 0=  ( 0i  , oscillatory onset). For oscillatory 

onset, setting 2Δ 0=        ( 0i  ) gives an expression for frequency of oscillations in the form (on dropping 

the subscript i) 

          ( )
2

2 2

0 1 2 0,a a a + + =                                                                                                              (3.15) 

Now Eq. (3.14) with 2Δ 0= , gives  
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The analytical expression for the oscillatory Rayleigh number given by Eq. (3.16) is minimized with respect 

to the wavenumber numerically, after substituting for ( )2
0   from Eq. (3.15), for various values of 

physical parameters in order to know their effects on the onset of oscillatory convection.  

 

RESULTS AND DISCUSSION 

The onset of double diffusive convection in a two-component viscoelastic fluid saturated sparsely packed 

porous layer in the presence of an internal heat source and thermal diffusion effect is investigated 

analytically using linear stability theory. In the linear stability theory the expressions for both stationary and 

oscillatory Rayleigh numbers are derived analytically along with the expression for frequency of oscillation. 

The stationary critical Rayleigh number is found to be independent of the viscoelastic parameters because of 

the absence of base flow in the present case. The critical Rayleigh number for the oscillatory mode is derived 

as a function of internal Rayleigh number, thermal diffusion, viscoelastic parameters, solute Rayleigh 

number, Darcy number, normalized porosity, Darcy-Prandtl number and Lewis number.  

 

The neutral stability curves in the TRa a−  plane for various parameter values are as shown in Figs.1-7. We 

fixed the values for the parameters except the varying parameter. From these figures it is clear that the 

neutral curves are connected in a topological sense. This connection allows the linear stability criteria to be 

expressed in terms of the critical Rayleigh number TcRa , below which the system is stable and unstable 

above. 

In Fig. 1, the neutral stability curves for different values of thermal diffusion TD  are drawn. From this 

figure, we observed that with an increase in the value of negative thermal diffusion TD , the stationary 

Rayleigh number increases, indicating that the negative thermal diffusion stabilizes the system. On the other 

hand, for positive thermal diffusion, the minimum of the stationary Rayleigh number decreases with an 

increase of the thermal diffusion, indicating that the positive thermal diffusion destabilizes the system in the 

stationary mode. In the case of oscillatory mode, we find that the negative thermal diffusion coefficient has 

destabilizing effect where as the positive thermal diffusion coefficient has a stabilizing effect. The effect of 

normalized porosity parameter on the neutral curves is shown in Fig. 2. We observe that the effect of 

increasing the normalized porosity parameter decreases the minimum of the Rayleigh number, indicating that 

the effect of normalized porosity parameter is to advance the onset of double diffusive convection. Further, it 

is important to note that the effect of normalized porosity parameter is significant for small . 

Fig. 3 depicts the effect of solute Rayleigh number S Ra  on the neutral stability curves for stationary and 

oscillatory modes. We find that the effect of increasing S Ra  is to increase the value of the Rayleigh number 

for stationary mode while decreases for oscillatory mode. Fig. 4 depicts the neutral stability curves for 

different values of Lewis number Le . It is observed that with the increase of Le  the critical values of 

Rayleigh number and the corresponding wave number for the over stable mode decrease while those for 

stationary mode increases. Therefore, the effect of Le  is to advance the onset of oscillatory convection 

where as its effect is to inhibit the stationary onset.  

The neutral stability curves for different values of Darcy-Prandtl number DPr are presented in the above Fig. 

5. The point where the over stable solution bifurcates into the stationary solution is observed to be shifted 
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towards a higher value of a with the increasing DPr . From this figure it is evident that for small and moderate 

values of DPr  the critical value of oscillatory Rayleigh number decreases with the increase of DPr , however 

this trend is reversed for large values of DPr . Fig. 6 exhibits the effect of Darcy number Da on the neutral 

stability curves for the fixed values of other governing parameters. It is observed that the oscillatory 

convection sets in prior to the stationary convection for the values of the parameters chosen for this figure. 

We find that with the increase in the values of Darcy number Da the critical Rayleigh number and the 

corresponding wavenumber for the stationary and oscillatory mode increases. Therefore, the effect of Darcy 

numer Da is to stabilize the system. 
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Fig. 7 shows the neutral stability curves for different values of the internal Rayleigh number intRa  and for 

fixed values of other parameters. We observe from this figure that the minimum value of the Rayleigh 

number for both stationary and oscillatory modes decreases with an increase in the value of the internal 

Rayleigh number intRa , indicating that the effect of the internal Rayleigh number is to destabilize the system. 
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CONCLUSIONS 

The onset of Darcy-Brinkman convection in a horizontal, sparsely packed porous layer saturated with a 

binary viscoelastic fluid with an internal heat source and Soret effect is studied analytically using linear 

stability theory. The following important conclusions are drawn: 

• With increase in the negative value of thermal diffusion, the stationary Rayleigh number increases, 

that is the effect of thermal diffusion stabilizes the system.  For the positive value of thermal diffusion, the 

stationary Rayleigh number decreases with increase of thermal diffusion, that is the effect of thermal 

diffusion destabilizes the system in the stationary mode. 

• In oscillatory case, the negative value thermal diffusion has destabilizing effect where as positive 

thermal diffusion has stabilizing effect. Increase in the value of thermal diffusion decreases the critical 

Rayleigh number for stationary mode where as it increases the critical Rayleigh number for oscillatory mode.  

• The effect of internal Rayleigh number is to destabilize the system for stationary and oscillatory 

modes. Increasing in internal Rayleigh number decreases the critical thermal Rayleigh number for stationary 

and oscillatory convection that is an internal Rayleigh number is to advance the onset of double diffusive 

convection.  

• Effect of solute Rayleigh number to delay both the stationary and oscillatory modes. 

• The effect of Lewis number is to advance the onset of oscillatory convection whereas its effect is to 

inhibit the stationary onset. Also it is observed that Lewis number is to advance the onset of oscillatory 

convection.  

• The Darcy Prandtl number has a dual effect on the oscillatory mode in the sense that there is a 

critical value say 
*

DPr  such that a strong destabilizing effect is observed when
*

D DPr Pr , while for 

*

D DPr Pr  this effect is reversed and hence the system is stabilized. The stabilizing effect of DPr  becomes 

less significant when
*

D DPr Pr . Hence effect of Darcy Prandtl number is to advance the onset of 

oscillatory convection.  

• The effect of Darcy number is stabilizing the system for stationary and oscillatory modes.  

• The effect of relaxation parameter is to advance the onset of double diffusive convection. The 

stability of the system in oscillatory mode becomes independent of the viscoelastic parameters when the 

values of relaxation and retardation parameters become same. The effect of retardation parameter stabilizes 

the system towards the oscillatory mode.  
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