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ABSTRACT 

Anisotropy and local thermal non-equilibrium are discussed in connection to the onset of convection in a 

horizontal couple stress fluid saturated inhomogeneous porous layer. The flow is described using the 

Darcy model, and the energy equation is solved using a two-field model that separates the solid and fluid 

phases differently. The critical Rayleigh number and corresponding wave number for the thermal 

convection are determined using linear stability theory. This article discusses how anisotropy, thermal 

non-equilibrium, and the couple-stress parameter affect the start of convection. It has been done to do 

asymptotic analysis for both very small and high values of the interphase heat transfer coefficient. It is 

demonstrated that in limiting instances, the results that are consistent with a thermally non-equilibrium 

anisotropic porous material can be recovered. 
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NOMENCLATURE   

 a horizontal wave number 

c  specific heat 

d  height of the porous layer 

g  gravitational acceleration 

 h inter phase heat transfer coefficient 

 H  non-dimensional inter phase heat transfer coefficient, 
fk

hd



2

 

 k horizontal wave number 

sf kk ,  thermal conductivities of fluid phase and solid phase respectively 

K  permeability of the porous medium 

xK  permeability parameter along x direction 

yK       permeability parameter along y direction 

 k unit vector in the vertical direction,  

p  pressure 

 
q


 velocity vector, ),( vu  

Ra  Rayleigh number, 

ff

ul KdTTg



 )(0 
 

 T  temperature  

 t  time 
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 yx,   space co-ordinates 

 

Greek symbols 

  diffusivity ratio 

  co-efficient of thermal expansion 

  porosity-modified conductivity ratio, 

s

f

k

k

)1( 




  

  porosity 

  thermal diffusivity  

e  effective viscosity 

f  fluid viscosity 

f  fluid density 

  non-dimensional temperature of the fluid phase 

  non-dimensional temperature of the solid phase 

2  
2

2

2

2

yx 







 

  dynamic viscosity 

  thermal diffusivity,  
ff ck 0  

1  anisotropic permeability parameter,  

h

z

K

K
 

 

Subscripts 

b basic state 

 

f  fluid 

 

l  lower 

 

s solid 

 

u  upper 

 

* non-dimensional 

 

0 reference 

 
/ 

perturbed quantity 

 

INTRODUCTION 

Many geophysical and technological issues are very interested in thermal convection in fluid-saturated 

porous media. Geothermal power use, oil reservoir modeling, thermal insulation of constructions, and 

nuclear waste disposal are all significant applications. Numerous writers have already conducted in-depth 

research on the issue of convective instability of a horizontal fluid-saturated porous layer confronted to an 
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unfavorable temperature gradient. The most recent reviews by Ingham and Pop [1998], Nield and Bejan 

[2006], and Vafai [2000] provide excellent documentation of the expanding body of work in this field. 

Isotropic materials have been a major focus of theoretical and experimental research on convective flow 

in porous media. However, the mechanical and thermal properties of porous materials are anisotropic in 

many real-world circumstances. Anisotropy typically results from the asymmetric shape or preferential 

orientation of porous fibres or matrix [Mckibbin, 1986]. 

Particulate-containing fluids are a common working medium in industrial settings. The majority of fluids 

do not conform to a Newtonian description, and the development of micro-momentum field theories in 

such a situation opened up new application areas, including polymeric suspensions, animal blood, and 

liquid crystals, which have been reported in recent years to contain very small suspended particles of 

various shapes. These particles have the ability to rotate independently of the fluid's rotation and flow, as 

well as to alter shape, contract and expand. The majority of real-world issues involving these working 

fluids are non-isothermal, and the development of thermally responsive fluids has opened up new 

application fields. In many of these applications, convection is a dominant and significant mechanism of 

heat transfer. 

Researchers have paid a lot of attention in recent years to the study of Rayleigh-Benard convection in 

porous layers when the fluid and solid phases are not in a local thermal equilibrium because the 

assumption of local thermal equilibrium is insufficient for many practical applications involving high-

speed flows or significant temperature differences between the fluid and solid phases, and it is crucial to 

take thermal non-equilibrium effects into account. It is anticipated that local thermal non-equilibrium 

theory will play a significant role in future developments due to the applications of porous media theory 

in drying, freezing, and other commonplace materials as well as applications in everyday technology like 

microwave heating and rapid heat transfer from computer chips via use of porous metal foams and their 

use in heat pipes. 

A two field model for the energy equation has been studied by Nield and Bejan [2006]. Two equations are 

utilized for the fluid and solid phases, as opposed to a single energy equation that describes the common 

temperature of the saturated porous media. In a two-field model, the terms that take into consideration 

heat loss or gain from one phase are connected to the energy equations. In a number of investigations, 

Rees and colleagues [1999, 2000, 2002] have examined the impact of thermal non-equilibrium (LTNE) 

on free convective fluxes in porous media. Detailed information on the works on thermal non-equilibrium 

effects is provided in the review of Kuznetsov [1998].    

 In this paper we are intended to study the effect of anisotropy and local thermal non-equilibrium 

on the onset of convection in a couple stress fluid saturated anisotropic porous layer heated from below. 

Our objective in this paper is to study how the onset criterion is affected by the combined effect of 

anisotropy and thermal non-equilibrium in steady cases. The effect of couple stress parameter on the 

stability is also presented. We have also carried out the asymptotic analysis for very small and very large 

values of the inter phase heat transfer coefficient.  

 

Mathematical Formulation 

We consider a horizontal couple stress fluid saturated anisotropic porous layer of depth d, which is heated 

from below and cooled from above. The lower surface is held at a temperature 1T , while the upper surface 

is at uT . We assume that the solid and fluid phases of the medium are not in local thermal equilibrium and 

use a two-field model for temperatures. It is assumed that at the bounding surfaces the solid and fluid 

phases have identical temperatures. The Darcy model is employed for the momentum equation. The basic 

governing equations are  

 

. 0 q ,                                                  (1) 
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2

2

1 1 1
. ( )

f f c f
p

t K
   

 

 
        

 
 

q
q q q g                                (2)                                                                                                                         

    
2( ) ( ) . ( )

f

f f f fh f s f

T
c c T k T h T T

t
   


     


q ,                                                  (3) 

     
2(1 )( ) (1 ) ( )s

s sz s s f

T
c k T h T T

t
  


     


,                                                         (4) 

                 [1 ( )]f o f uT T     .                                                (5)            

We eliminate the pressure from the momentum equation and render the resulting equation and the energy 

equations for fluid phase and solid phase dimensionless by using the following transformations. 

           

* * * * * *

2
*

1 1

( , ) ( , ), ( , , ) ( , , ),
( ) ( )

( )
( ) , ( ) ,

f f

f f

f
u u s u uf

f

k k
x y d x y u v w u v w p p

c d c K

c d
T T T T T T T T t t

k

 

 


 

  

      

                         (6)  

to obtain 

                

2
2 2
1 12

1 w
w Ra w

z


  


,                          (7)  

              

2

2
1 2

( . ) ( )
f f

f f f s f

T T
T T H T T

t z


 
      

 
q ,                                                   (8)       

              

2
2

2
( )s s

s s s f

T T
T H T T

t z
  
 

    
 

                                                                   (9) 

where, 
2

1

2

( )
, , ,

(1 )

( )
, , , , .

( )

f u z f

f f s fz

f f fhs sh x e
s f

f s s sz fz z f

g T T K d k hd
Ra H

k k

k kc k
C

c k k k d

  


    

  
   

   


  



     

                      (10) 

(The asterisks have been dropped for simplicity) 

 

Basic State 

The basic state is assumed to be quiescent and is given by 

  0, ( ), ( ).f fb s sbu v w T T z T T z                                              (11) 

The basic state temperatures of fluid phase and solid phase satisfy the equations 

                         

2

2
( ) 0

fb

sb fb

d T
H T T

dz
  ,               (12) 

     

2

2
( ) 0sb

sb fb

d T
H T T

dz
                (13) 

with boundary conditions 
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          1 0fb sbT T at z   ,               

  0 1fb sbT T at z                                                                           (14) 

so that the conduction state solutions are given by 

                        (1 )fb sbT T z   .               (15) 

The perturbed state 

The basic state is perturbed and the quantities in the perturbed state are given by 

                       
' ' '( , , ) ( , , ), , .f fb s sbu v w u v w T T T T                  (16) 

Substituting the Equations (16) into Equations (7)-(9) and using the basic state solutions, we obtain the 

following equations for the perturbed quantities (after neglecting the primes) 

                 

2
2 4 2
1 12

w
w C w Ra

z
   


     


,                                                                  (17) 

                        

2
2
1 2

. ( )fw H
t z

 
    

 
       

 
q ,                                                   (18) 

                         

2
2
1 2

( )s H
t z

 
    

 
    

 
.                                                                     (19) 

Since the fluid and solid phases are not in local thermal equilibrium, the use of appropriate thermal 

boundary conditions may pose a difficulty. However, the assumption that the solid and fluid phases have 

equal temperatures at the bounding surfaces made at the beginning of this section helps in overcoming 

this difficulty. Accordingly, Equations (17) to (19) are solved for impermeable isothermal boundaries. 

Hence the boundary conditions are  

  0 at 0, 1w z  ,                  (20a) 

  0 at 0, 1z    .                  (20b) 

 Linear Stability Theory 

To study the linear stability theory, we use the linearized version of equations (17)-(19). The principle of 

exchange of stabilities holds in the presence of anisotropy and non-LTE effects (there is only one 

destabilizing agency) so that the onset of convection is stationary. 

             We seek the solutions to the linearized equations in the form                                                                          

  1 2 3( , , ) [ , , ]exp( )sinw A A A ilx imy z    ,                                             (21) 

where A’s are constants. Substituting the equations (21) in equations (17) – (19) we  

obtain the following matrix equation 

        

2 2 2 2 2 2

1

2 2
2

2 2
3

( ) 0 0

1 ( ) 0

00 ( )

f

s

a C a Ra a A

a H H A

AH a H

    

 

   

        
     
     
        
     
     
           

.    (22) 

 

By setting the determinant of the above matrix to zero we get               

      2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

( ( ) )

( )

f s f s

s

a C a a a H a a
Ra

a a H

            

   

        


 
                         

                                                                                                                                                       (23)            
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 For given values of H, γ,  , C,
f  and 

s  Equation (23) describes the neutral curves for the onset of 

thermal convection. The value of Ra given in Equation (23) may be minimized with respect to a, and, 

although condition for extreme value may be written down, it is difficult to obtain a closed-form explicit 

expression for the minimizing value of a. Therefore, we used the Newton–Raphson iteration scheme to 

obtain the critical values of Ra and a as functions of H, γ, ξ, 
f  and 

s .  

When ξ = f  = s  =1 and C=0 (i.e. for the isotropic porous medium with non-LTE effects), Equation (23) 

reduces to 

 

2 2 2 2 2

2 2 2

( ) ( ) (1 )a a H
Ra

a a H

  

 

    
  

  
.                  (24) 

 This expression for the Rayleigh number is same as the one given by Banu and Rees (2002) for 

the non-LTE isotropic case.  

 

Further when H  (i.e in the LTE limit) the above expression (24) reduces to  

 

2
2 2

( )
(1 )

a
Ra Ra

a

 



 
   

  
.                   (25) 

Note that the expression on the LHS simplifies to  

           
1( )

1 [ (1 ) ]

f u

f s f

g T T Kd
Ra

 

    

 
 

   
                   (26) 

which is the expression for the Rayleigh number now based on the mean properties of the porous 

medium. In fact it is this value, which is used in the local thermal equilibrium case. Equation (25) gives 

the critical values for the Rayleigh number and the wave number for the onset of convection as 4
2 and 

 , respectively which are the classical Darcy-Benard results. In the limit of H  and in the presence 

of anisotropic effects, equation (23) reduces to  

 

         

 2 2 2 2 2 2 2

2

( ( ) )a C a a
Ra

a

     



   
                                                                      (27) 

where f s     for the LTE case. The Rayleigh number given by Eq. (27) attains the critical value 

for the wave number xac  , which satisfies the equation 

          
4 6 3 2 2 22 ( 2 ) 0C x C x C C                

The expression for the critical Rayleigh number cRa  and the critical wave number ca  for both small H  

and large H  are evaluated and comparison of these values with the exact values obtained from Equation 

(23) are given in Table 1 & 2. It is important to note that an excellent agreement is found between these 

two results. 

 

RESULTS AND DISCUSSION 

In order to determine the impact of different values of physical factors on the commencement of 

convection, the expression for Rayleigh number provided by Equation (23) is numerically assessed. In 

Figures 1(a–d)  the neutral curves for H=100 and for a range of values of the parameters γ, ,
f , s  and 

C are displayed. Figure 1(a) shows the neutral curves for the case of isotropic porous medium saturated 

with couple stress fluid (i.e. when   =
f  = s  =1) for different values of γ. It may be noted that, in 

general
c

Ra  and the minimum wave number decrease as γ increases, indicating that the effect of 
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increasing γ is to destabilize the system. The effects of anisotropy on the onset of thermal convection are 

evident from Figures 1(b, d, e). In Figure 1(b) we show the effect of mechanical anisotropy parameter 

(= 
x zK K ) on Rayleigh number Ra for a fixed values of γ =0.3 and 

f  =
s  =1.0. From this figure it is 

evident that increase in the value of   decreases 
c

Ra  and thus augments the onset of convection. This 

may be understood as follows: let us keep the vertical permeability 
zK  fixed (or the horizontal 

permeability 
xK  fixed), and vary the horizontal permeability 

xK  (or the vertical permeability
zK ). Then 

an increased horizontal permeability reduces the Rayleigh number, indicating that the system becomes 

unstable. The effect of the anisotropic parameter is more significant for   =0.1.  In Figure1 (c) we 

display the effect of couple stress parameter on Rayleigh number. It is evident that with increase in the 

couple stress parameter decreases the Rayleigh number which shows that the couple stress parameter has 

stabilizing effect. The effect of the thermal anisotropy parameters
f , and 

s  for fluid and solid phases 

are shown in Figure 1(d) and 1(e), respectively for γ =0.3 and   =1.0 and C=1. The effect of the thermal 

anisotropy parameter for the fluid phase 
f  is shown Figure 1(d). The effect of increasing 

f for fixed 

value of the othe, increases the critical Rayleigh number as well the minimizing wave number and thus 

delays the onset of convection. This is because increase in horizontal thermal conductivity of the fluid 

phase increases the stability of the system. Figure 1(d) shows the effect of thermal anisotropy parameter 

s for the solid phase. Similar effect is found as in the case of fluid phase.  

Figures 2(a–d) shows the variation of critical Rayleigh number with interphase heat transfer coefficient H 

for a range of values of the parameters γ, ξ,
f , 

s and C = 1. The variation of 
cRa  with H for different 

values of γ for the case of isotropic porous medium is displayed in Figure 2 (a). We observe that the 

critical Rayleigh number is independent of γ for very small values of H while for large H critical Rayleigh 

number decreases with increase in γ. The physical reason for this is that there is almost no transfer of heat 

between the phases and therefore the condition for the onset of convection is not affected by the 

properties of the solid phase. The effect of mechanical anisotropy parameter   on the critical Rayleigh 

number is depicted in Fig 2(b) for  =0.3, 1f s    and C=1. We found that the critical Rayleigh 

number decreases with increase in  .Further the value of cR increases slowly with H reaches a maximum 

value and for large H cR ultimately approaches to an asymptotic value depending on the value of  .The 

effect of thermal anisotropy parameter f of the fluid phase on cR is shown in fig2(c) for 

0.3, 1sand and      C=1. We find that an increase in the value of 
f  increases the value of 

c
Ra  indicating that the effect of increasing the thermal anisotropy parameter is to delay the onset of 

convection. Figure 2 (d) shows the effect of thermal anisotropy parameter s  of the solid phase on 
c

Ra  

for γ =0.3 and 
f  =  =1.0. Its effect is found to be similar to that of 

f  . However, for small values of 

H, 
c

Ra  is found to be independent of s . 

Fig 3(a-d) depicts the variation of the critical Rayleigh number based on the mean properties of the 

porous medium with the interphase heat transfer coefficient H for a range of values of the parameters γ, 

,
f  and s . Figure 3(a) shows that cRa γ/(1+γ ) approaches to a common limit as H→∞ and this 

approach to common limit depends strongly on the value of γ . It is also important to note that cRa γ/(1+γ 

), however has no common limit for anisotropic case as H→∞ (see Figure 3(b–d)) and the effect of  ,
f  

and s  on the stability of the system is found to be akin to that of the previous case. 

 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Online, International Journal, Available at http://www.cibtech.org/jpms.htm 

2022 Vol. 12, pp. 6-20/Sridhar 

Research Article (Open Access) 

  

  13 

 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1500

3000

4500

6000

7500

9000

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
2000

2500

3000

3500

4000

4500

5000

5500

6000

0 1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

7000

8000

(a)

 = 0.001

0.1
0.5

1 2 10 100


s
=1


f
=1

H=100

C=1

R
a

a/a
c

(b)

1
0.75

0.5

 = 0.1

2


s
=1


f
=1

H=100

=0.3

C=1

R
a

a/a
c

(c)
C = 0.01

0.05

0.1

0.5

2


s
=1


f
=1

H=100

=1

R
a

a/a
c

 
Figure 1: Neutral curves for different values of  γ, ζ, C, ηs and ηf 
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Figure 2. Variation of critical wave number with interphase heat transfer coefficient H for different values 

of γ, ζ, C, ηs and ηf 
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       Figure 3. Variation of critical Rayleigh number with interphase heat transfer coefficient H for  

                      different  values of γ, ζ, C, ηs and ηf 
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      Figure4. Variation of critical Rayleigh number based on mean properties of the porous medium  with 

interphase heat transfer coefficient H for different values of γ, ζ, C, ηs and ηf 
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Figure5. Variation of critical Rayleigh number , critical Rayleigh number based on mean properties of the 

porous medium and critical wave number with interphase heat transfer coefficient H for different  C 

 

In Figures 4 (a–d) we display the critical wave number for a range of values of the parameters γ, ξ,
f , s  

and C. We see that the critical wave number remains constant for very small and very large values of the 

interphase heat transfer coefficient H. The reason is that the solid phase ceases to affect the thermal field 

of the fluid when H→0 and on the other hand, the solid and fluid phases will have identical temperatures 

when H→∞. For the intermediate values of H, the critical wave number attains the maximum value for 

each values of the parameters γ, ξ, 
f  and s  . We also observe that in the absence of anisotropic effects 
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the critical wave number approaches a common limit H→0 and as H →∞ (see Figure 4(a)), while in the 

presence of anisotropic effects the critical wave number does not approach to a common limit. 

The effect of the couple stress parameter on critical Rayleigh number, Rayleigh number based on mean 

properties of the porous medium and critical wave number is displayed in Fig 5(a)-(b). It is shown that the 

effect of increasing couple stress parameter is to increase the critical Rayleigh number indicating that the 

couple stress parameter has a stabilizing effect. Further, we observe that the effect of couple stress 

parameter is significant for moderate and large values of H and less significant for small values of H. The 

effect of the couple stress parameter on the critical wave number is shown in Figure 5(c). We find from 

this figure that critical wave number decreases with increase in the value of couple stress parameter. 

 

CONCLUSION 

Analytical analysis is done to determine the stability of an anisotropic, fluid-saturated, horizontal 

coupling stress porous layer that is heated from below and chilled from above when the solid and fluid 

phases are not in local thermal equilibrium. The momentum equation is represented by the Darcy model, 

while the energy equation is represented by the two-field model, which each independently represents the 

solid and fluid phases. Analytical methods are used to determine the prerequisite for convection to begin. 

For a variety of values of , , , ,f s H and C    , we show the outcomes in Figures 1-4. It has been 

discovered that raising the conductivity ratio has the impact of lowering both the critical Rayleigh number 

and the critical wave number. Destabilizing the system is the result of raising. The critical Rayleigh 

number is independent of H for γ =10. The critical Rayleigh number is independent of γ for very small H 

while for large H, it decreases with increasing γ . The critical Rayleigh number decreases and the critical 

wave number rises as the mechanical anisotropy parameter is increased. The consequence of increasing 

the thermal anisotropy parameters is to raise the critical Rayleigh number for a certain value of H. The 

critical Rayleigh number is unaffected by the thermal anisotropy of the solid phase for very low values of 

H. For both small and large values of H, the critical wave number is unchanged, and for intermediate 

values, it reaches its maximum. The system becomes more stable as a result of the effect of increasing the 

couple stress parameter, which delays the commencement of convection. 
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