SUMMABLE SERIES AND SUMMABILITY FACTORS IN NONARCHIMEDEAN ANALYSIS

*P N Natarajan
Old No. 2/3, New No. 3/3, Second Main Road
R.A. Puram, Chennai 600 028, India
*Author for Correspondence: pinnangudinatarajan@gmail.com

Abstract

In this paper we study about certain summable series and the corresponding summability factors in complete, non-trivially valued, non-archimedean fields.

Keywords: Summable Series, Summability Factors, Non-archimedean Fields

INTRODUCTION AND PRELIMINARIES

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. For the definition of summability factors see (Peyerimhoff, 1969). In the classical case, the following theorems are wellknown (see, for instance, Hardy (1949), p. 51).

Theorem A.
$\sum_{n=0}^{\infty} a_{n} b_{n}$ converges whenever $\sum_{n=0}^{\infty} a_{n}$ converges if and only if $\sum_{n=0}^{\infty}\left|b_{n}-b_{n+1}\right|<\infty$.

Theorem B.
$\sum_{n=0}^{\infty} a_{n} b_{n}$ converges whenever $\sum_{n=0}^{\infty} a_{n}$ has bounded partial sums if and only if $\lim _{n \rightarrow \infty} b_{n}=0$.

We shall now prove the analogues of Theorem A and Theorem B in K .

Theorem 1.

$\sum_{n=0}^{\infty} a_{n} b_{n}$ converges whenever $\sum_{n=0}^{\infty} a_{n}$ converges if and only if $\left\{b_{n}\right\}$ is bounded.

Proof.
If $\sum_{n=0}^{\infty} a_{n}$ converges and $\left\{b_{n}\right\}$ is bounded, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$ so that $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges (see Bachman (1964), p. 25). Conversely, let $\sum_{n=0}^{\infty} a_{n} b_{n}$ converge whenever $\sum_{n=0}^{\infty} a_{n}$ converges. We claim that $\left\{b_{n}\right\}$ is bounded. Suppose not. We can now find a strictly increasing sequence $\{\mathrm{n}(\mathrm{i})\}$ of positive integers such that $n(i+1)-n(i)>1$ and

$$
\begin{equation*}
\left|\mathrm{b}_{\mathrm{n}(\mathrm{i})}\right|>\mathrm{i}^{2}, \quad \mathrm{i}=1,2, \ldots \tag{1}
\end{equation*}
$$

Research Article

Since K is non-trivially valued, there exists $\pi \in \mathrm{K}$ such that $0<\rho=|\pi|<1$. For $\mathrm{i}=1,2, \ldots$, we can find a non-negative integer $\alpha(i)$ such that

$$
\begin{equation*}
\rho^{\alpha(\mathrm{i})+1} \leq \frac{1}{\mathrm{i}^{2}}<\rho^{\alpha(\mathrm{i})} \tag{2}
\end{equation*}
$$

Define the series $\sum_{n=0}^{\infty} a_{n}$, where

$$
\begin{aligned}
\mathrm{a}_{\mathrm{n}} & =\pi^{\alpha(\mathrm{i})+1}, \quad \text { if } \mathrm{n}=\mathrm{n}(\mathrm{i}) ; \\
& =0, \quad \text { if } \mathrm{n} \neq \mathrm{n}(\mathrm{i}), \mathrm{i}=1,2, \ldots \ldots
\end{aligned}
$$

It is clear that $\sum_{n=0}^{\infty} a_{n}$ converges, since

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|=\sum_{i=1}^{\infty}\left|a_{n(i)}\right|=\sum_{i=1}^{\infty} \rho^{\alpha(i)+1} \leq \sum_{i=1}^{\infty} \frac{1}{i^{2}}<\infty,
$$

using (2). On the other hand,

$$
\begin{aligned}
\left|a_{n(i)} b_{n(i)}\right| & >i^{2} \rho^{\alpha(i)+1}, \quad \text { using (1) and (2) } \\
& =i^{2} \rho \cdot \rho^{\alpha(i)} \\
& >i^{2} \rho \cdot \frac{1}{i^{2}}, \quad \text { using (2) again } \\
& =\rho, \quad i=1,2, \ldots \\
& \nrightarrow 0, \quad i \rightarrow \infty,
\end{aligned}
$$

so that $\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}$ does not converge, which is a contradiction. This completes the proof of the theorem.

Theorem 2.

$\sum_{n=0}^{\infty} a_{n} b_{n}$ converges whenever $\sum_{n=0}^{\infty} a_{n}$ has bounded partial sums if and only if $\lim _{n \rightarrow \infty} b_{n}=0$.
Proof.
Let $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left|s_{n}\right| \leq M, n=0,1,2, \ldots$, where $s_{n}=\sum_{k=0}^{n} a_{k}, n=0,1,2, \ldots$. Now, $\left|a_{n}\right|=\left|s_{n}-s_{n-1}\right| \leq \max \left(\left|s_{n}\right|,\left|s_{n-1}\right|\right) \leq M, n=0,1,2, \ldots$, so that $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$. Consequently $\sum_{n=0}^{\infty} a_{n} b_{n}$
converges. Conversely, let $\sum_{n=0}^{\infty} a_{n} b_{n}$ converge whenever $\left\{s_{n}\right\}$ is bounded. Suppose $\lim _{n \rightarrow \infty} b_{n} \neq 0$. Then there exist $\varepsilon>0$ and a strictly increasing sequence $\{n(i)\}$ of positive integers such that

$$
\begin{equation*}
\left|\mathrm{b}_{\mathrm{n}(\mathrm{i})}\right|>\varepsilon, \quad \mathrm{i}=1,2, \ldots \tag{3}
\end{equation*}
$$

We can now choose a positive integer α such that

$$
\begin{equation*}
\rho^{\alpha+1} \leq \frac{1}{\varepsilon}<\rho^{\alpha}, \tag{4}
\end{equation*}
$$

where $0<\rho=|\pi|<1, \pi \in \mathrm{~K}$ as before. Define

$$
\begin{aligned}
\mathrm{a}_{\mathrm{n}} & =\pi^{\alpha+1}, \quad \text { if } \mathrm{n}=\mathrm{n}(\mathrm{i}) \\
& =0, \quad \text { if } \mathrm{n} \neq \mathrm{n}(\mathrm{i}), \mathrm{i}=1,2, \ldots
\end{aligned}
$$

It is clear that $\left|a_{n}\right| \leq \rho^{\alpha+1} \leq \frac{1}{\varepsilon}$ and so $\left|s_{n}\right| \leq \frac{1}{\varepsilon}, n=0,1,2, \ldots$. Thus $\left\{s_{n}\right\}$ is bounded. However,

$$
\begin{aligned}
\left|\mathrm{a}_{\mathrm{n}(\mathrm{i})} \mathrm{b}_{\mathrm{n}(\mathrm{i})}\right| & >\varepsilon \rho^{\alpha+1}, \quad \text { using (3) and (4) } \\
& =\varepsilon \rho \cdot \rho^{\alpha} \\
& >\varepsilon \rho \cdot \frac{1}{\varepsilon}, \quad \text { using (4) again } \\
& =\rho \\
& \ngtr 0, \quad \mathrm{i} \rightarrow \infty
\end{aligned}
$$

so that $\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}$ does not converge, which is a contradiction, proving the theorem.

The following definition (see Srinivasan, 1965) is needed in the sequel.

Definition 3.

The sequence $\left\{x_{n}\right\}$ in K is said to be Y-summable to ℓ if

$$
\frac{\mathrm{x}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}-1}}{2} \rightarrow \ell, \quad \mathrm{n} \rightarrow \infty
$$

The infinite series $\sum_{\mathrm{k}=0}^{\infty} \mathrm{x}_{\mathrm{k}}$ is said to be Y-summable to s , if $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ is Y-summable to s , where

$$
\mathrm{s}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}, \quad \mathrm{n}=0,1,2, \ldots
$$

Research Article

The next result is a consequence of Theorem 3 of (Natarajan, 2003).

Theorem 4.

If $\sum_{n=0}^{\infty} a_{n}$ is Y-summable and $\left\{b_{n}\right\}$ converges, then $\sum_{n=0}^{\infty} a_{n} b_{n}$ is Y-summable.

Remark 5.

The hypothesis that " $\left\{b_{n}\right\}$ converges" in Theorem 4 cannot be dropped, as the following example illustrates. Let $K=Q_{p}$, the p-adic field for a prime p and let $\left\{b_{n}\right\}=\{1,-1,1,-1, \ldots\}$. It is clear that $\left\{b_{n}\right\}$ does not converge. Let $\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}=1-1+1-1+\ldots$. Note that $\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}$ is Y -summable to $\frac{1}{2}$. However,

$$
\begin{aligned}
\left|\mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}+\mathrm{a}_{\mathrm{n}+1} \mathrm{~b}_{\mathrm{n}+1}\right| & =|2| \\
& \rightarrow 0, \quad \mathrm{n} \rightarrow \infty,
\end{aligned}
$$

so that $\sum_{n=0}^{\infty} a_{n} b_{n}$ is not Y-summable (see Srinivasan, 1965).
In the context of Theorem 1 and Theorem 4, the following result is of interest.

Theorem 6.

If $\sum_{n=0}^{\infty} a_{n} b_{n}$ is Y-summable whenever $\sum_{n=0}^{\infty} a_{n}$ is Y-summable, then $\left\{b_{n}\right\}$ is bounded.

Proof.

Let $\sum_{n=0}^{\infty} a_{n} b_{n}$ be Y-summable whenever $\sum_{n=0}^{\infty} a_{n}$ is Y-summable. Suppose $\left\{b_{n}\right\}$ is not bounded. Then we can find a strictly increasing sequence $\{\mathrm{n}(\mathrm{i})\}$ of positive integers such that $\mathrm{n}(\mathrm{i}+1)-\mathrm{n}(\mathrm{i})>1$ and

$$
\begin{equation*}
\left|\mathrm{b}_{\mathrm{n}(\mathrm{i})}\right|>\mathrm{i}, \quad \mathrm{i}=1,2, \ldots . \tag{5}
\end{equation*}
$$

For $\mathrm{i}=1,2, \ldots$, there exists a positive integer $\alpha(\mathrm{i})$ such that

$$
\begin{equation*}
\rho^{\alpha(i)+1} \leq \frac{1}{\mathrm{i}}<\rho^{\alpha(\mathrm{i})}, \tag{6}
\end{equation*}
$$

$0<\rho=|\pi|<1, \pi \in \mathrm{~K}$ as before. Define

$$
\begin{aligned}
\mathrm{a}_{\mathrm{n}} & =\pi^{\alpha(\mathrm{i})+1}, \quad \text { if } \mathrm{n}=\mathrm{n}(\mathrm{i}) ; \\
& =0, \quad \text { if } \mathrm{n} \neq \mathrm{n}(\mathrm{i}), \quad \mathrm{i}=1,2, \ldots .
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty}\left(a_{n}+a_{n+1}\right)=0$, using (6) so that $\sum_{n=0}^{\infty} a_{n}$ is Y-summable. On the other hand,

$$
\begin{aligned}
\left|a_{n(i)} b_{n(i)}+a_{n(i)+1} b_{n(i)+1}\right|= & \left|a_{n(i)} b_{n(i)}\right| \\
& >i \cdot \rho^{\alpha(i)+1}, \quad \text { using (5) and (6) } \\
& =\mathrm{i} \rho \cdot \rho^{\alpha(i)} \\
& >\mathrm{i} \rho \cdot \frac{1}{i}, \quad \text { using (6) again } \\
& =\rho \\
& \nrightarrow 0, \quad i \rightarrow \infty .
\end{aligned}
$$

Consequently $\sum_{n=0}^{\infty} a_{n} b_{n}$ is not Y-summable, a contradiction, which establishes the theorem.

Remark 7.

Converse of Theorem 6 does not hold in view of Remark 5.

REFERENCES

Bachman G (1964). Introduction to p-adic numbers and valuation theory, Academic Press.
Hardy GH (1949). Divergent Series, Oxford.
Natarajan PN (2003). A theorem on summability factors for regular methods in complete ultrametric fields. Contemporary Math 319 223-225.
Peyerimhoff A (1969). Lectures on summability, Springer.
Srinivasan VK (1965). On certain summation processes in the p-adic field. Indagationes Mathematicae 27 319-325.

