SUMMABLE SERIES AND SUMMABILITY FACTORS IN NON-ARCHIMEDEAN ANALYSIS

*P N Natarajan

Old No. 2/3, New No. 3/3, Second Main Road R.A. Puram, Chennai 600 028, India *Author for Correspondence: pinnangudinatarajan@gmail.com

ABSTRACT

In this paper we study about certain summable series and the corresponding summability factors in complete, non-trivially valued, non-archimedean fields.

Keywords: Summable Series, Summability Factors, Non-archimedean Fields

INTRODUCTION AND PRELIMINARIES

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. For the definition of summability factors see (Peyerimhoff, 1969). In the classical case, the following theorems are well-known (see, for instance, Hardy (1949), p. 51).

Theorem A.

$$\sum_{n=0}^{\infty} a_n b_n \text{ converges whenever } \sum_{n=0}^{\infty} a_n \text{ converges if and only if } \sum_{n=0}^{\infty} |b_n - b_{n+1}| < \infty.$$

Theorem B.

$$\sum_{n=0}^{\infty} a_n b_n$$
 converges whenever $\sum_{n=0}^{\infty} a_n$ has bounded partial sums if and only if $\lim_{n \to \infty} b_n = 0$.

We shall now prove the analogues of Theorem A and Theorem B in K.

Theorem 1.

$$\sum_{n=0}^{\infty} a_n b_n \ \text{ converges whenever } \sum_{n=0}^{\infty} a_n \ \text{ converges if and only if } \{b_n\} \text{ is bounded}.$$

Proof.

If
$$\sum_{n=0}^{\infty} a_n$$
 converges and $\{b_n\}$ is bounded, then $\lim_{n \to \infty} a_n b_n = 0$ so that $\sum_{n=0}^{\infty} a_n b_n$ converges (see Bachman

(1964), p. 25). Conversely, let $\sum_{n=0}^{\infty} a_n b_n$ converge whenever $\sum_{n=0}^{\infty} a_n$ converges. We claim that $\{b_n\}$ is bounded. Suppose not. We can now find a strictly increasing sequence $\{n(i)\}$ of positive integers such that n(i+1) - n(i) > 1 and

$$|\mathbf{b}_{n(i)}| > i^2, \quad i = 1, 2, \dots$$
 (1)

Centre for Info Bio Technology (CIBTech)

Research Article

Since K is non-trivially valued, there exists $\pi \in K$ such that $0 < \rho = |\pi| < 1$. For i = 1, 2, ..., we can find a non-negative integer $\alpha(i)$ such that

$$\rho^{\alpha(i)+1} \leq \frac{1}{i^2} < \rho^{\alpha(i)}.$$
(2)

Define the series $\sum_{n=0}^{\infty} a_n$, where

 $a_n = \pi^{\alpha(i)+1}$, if n = n(i); = 0, if $n \neq n(i), i = 1, 2,$

It is clear that $\sum_{n=0}^{\infty} a_n$ converges, since

$$\sum_{n=0}^{\infty} |a_n| = \sum_{i=1}^{\infty} |a_{n(i)}| = \sum_{i=1}^{\infty} \rho^{\alpha(i)+1} \le \sum_{i=1}^{\infty} \frac{1}{i^2} < \infty,$$

using (2). On the other hand,

$$\begin{aligned} \mathbf{a}_{n(i)}\mathbf{b}_{n(i)} &| > i^{2}\rho^{\alpha(i)+1}, \quad \text{using (1) and (2)} \\ &= i^{2}\rho \cdot \rho^{\alpha(i)} \\ &> i^{2}\rho \cdot \frac{1}{i^{2}}, \quad \text{using (2) again} \\ &= \rho, \quad i = 1, 2, \dots \\ &\neq 0, \quad i \to \infty, \end{aligned}$$

so that $\sum_{n=1}^{\infty} a_n b_n$ does not converge, which is a contradiction. This completes the proof of the theorem.

Theorem 2.

$$\sum_{n=0}^{\infty} a_n b_n \text{ converges whenever } \sum_{n=0}^{\infty} a_n \text{ has bounded partial sums if and only if } \lim_{n \to \infty} b_n = 0$$

Proof.

Let $\lim_{n \to \infty} b_n = 0$ and $|s_n| \le M$, n = 0, 1, 2, ..., where $s_n = \sum_{k=0}^n a_k$, n = 0, 1, 2, Now,

 $|a_n| = |s_n - s_{n-1}| \le \max(|s_n|, |s_{n-1}|) \le M, n = 0, 1, 2, ..., \text{ so that } \lim_{n \to \infty} a_n b_n = 0.$ Consequently $\sum_{n=0}^{\infty} a_n b_n$

Centre for Info Bio Technology (CIBTech)

converges. Conversely, let $\sum_{n=0}^{\infty} a_n b_n$ converge whenever $\{s_n\}$ is bounded. Suppose $\lim_{n \to \infty} b_n \neq 0$. Then there exist $\varepsilon > 0$ and a strictly increasing sequence $\{n(i)\}$ of positive integers such that

$$|\mathbf{b}_{n(i)}| > \varepsilon, \quad i = 1, 2,$$
 (3)

We can now choose a positive integer α such that

$$\rho^{\alpha+1} \le \frac{1}{\varepsilon} < \rho^{\alpha}, \tag{4}$$

where $0 < \rho = |\pi| < 1$, $\pi \in K$ as before. Define

$$a_n = \pi^{\alpha + 1}$$
, if $n = n(i)$;
= 0, if $n \neq n(i)$, $i = 1, 2, ...$

It is clear that $|a_n| \le \rho^{\alpha+1} \le \frac{1}{\varepsilon}$ and so $|s_n| \le \frac{1}{\varepsilon}$, n = 0, 1, 2, ... Thus $\{s_n\}$ is bounded. However,

$$|a_{n(i)}b_{n(i)}| > \varepsilon \rho^{\alpha+1}, \text{ using (3) and (4)}$$

= $\varepsilon \rho \cdot \rho^{\alpha}$
> $\varepsilon \rho \cdot \frac{1}{\varepsilon}, \text{ using (4) again}$
= ρ
 $\Rightarrow 0, i \rightarrow \infty$

so that $\sum_{n=0}^{\infty} a_n b_n$ does not converge, which is a contradiction, proving the theorem.

The following definition (see Srinivasan, 1965) is needed in the sequel.

Definition 3.

The sequence $\{x_n\}$ in K is said to be Y-summable to ℓ if

$$\frac{\mathbf{x}_{n} + \mathbf{x}_{n-1}}{2} \to \ell, \quad n \to \infty.$$

The infinite series $\sum_{k=0}^{\infty} x_k$ is said to be Y-summable to s, if $\{s_n\}$ is Y-summable to s, where

$$s_n = \sum_{k=0}^n x_k, \quad n = 0, 1, 2, \dots$$

Centre for Info Bio Technology (CIBTech)

The next result is a consequence of Theorem 3 of (Natarajan, 2003).

Theorem 4.

If $\sum_{n=0}^{\infty} a_n$ is Y-summable and $\{b_n\}$ converges, then $\sum_{n=0}^{\infty} a_n b_n$ is Y-summable.

Remark 5.

The hypothesis that "{b_n} converges" in Theorem 4 cannot be dropped, as the following example illustrates. Let $K = Q_p$, the p-adic field for a prime p and let {b_n} = {1, -1, 1, -1, ...}. It is clear that {b_n} does not converge. Let $\sum_{n=0}^{\infty} a_n = 1 - 1 + 1 - 1 + ...$ Note that $\sum_{n=0}^{\infty} a_n$ is Y-summable to $\frac{1}{2}$. However,

$$\begin{vmatrix} a_n b_n + a_{n+1} b_{n+1} \end{vmatrix} = \begin{vmatrix} 2 \end{vmatrix}$$

$$\Rightarrow 0, \quad n \to \infty$$

so that $\sum_{n=0}^{\infty} a_n b_n$ is not Y-summable (see Srinivasan, 1965).

In the context of Theorem 1 and Theorem 4, the following result is of interest.

Theorem 6.

If
$$\sum_{n=0}^{\infty} a_n b_n$$
 is Y-summable whenever $\sum_{n=0}^{\infty} a_n$ is Y-summable, then $\{b_n\}$ is bounded.

Proof.

Let $\sum_{n=0}^{\infty} a_n b_n$ be Y-summable whenever $\sum_{n=0}^{\infty} a_n$ is Y-summable. Suppose $\{b_n\}$ is not bounded. Then we can find a strictly increasing sequence $\{n(i)\}$ of positive integers such that n(i+1) - n(i) > 1 and

$$|\mathbf{b}_{n(i)}| > i, \quad i = 1, 2, \dots$$
 (5)

For i = 1, 2, ..., there exists a positive integer $\alpha(i)$ such that

$$\rho^{\alpha(i)+1} \leq \frac{1}{i} < \rho^{\alpha(i)}, \tag{6}$$

 $0 < \rho = |\pi| < 1, \pi \in K$ as before. Define

$$a_n = \pi^{\alpha(i)+1}$$
, if $n = n(i)$;
= 0, if $n \neq n(i)$, $i = 1, 2, ...$

Note that $\lim_{n \to \infty} (a_n + a_{n+1}) = 0$, using (6) so that $\sum_{n=0}^{\infty} a_n$ is Y-summable. On the other hand,

$$\begin{aligned} \left| a_{n(i)}b_{n(i)} + a_{n(i)+1}b_{n(i)+1} \right| &= \left| a_{n(i)}b_{n(i)} \right| \\ &> i \cdot \rho^{\alpha(i)+1}, \quad \text{using (5) and (6)} \\ &= i\rho \cdot \rho^{\alpha(i)} \\ &> i\rho \cdot \frac{1}{i}, \quad \text{using (6) again} \\ &= \rho \\ & \not\rightarrow 0, \quad i \rightarrow \infty. \end{aligned}$$

Consequently $\sum_{n=0}^{\infty} a_n b_n$ is not Y-summable, a contradiction, which establishes the theorem.

Remark 7.

Converse of Theorem 6 does not hold in view of Remark 5.

REFERENCES

Bachman G (1964). Introduction to p-adic numbers and valuation theory, Academic Press.

Hardy GH (1949). Divergent Series, Oxford.

Natarajan PN (2003). A theorem on summability factors for regular methods in complete ultrametric fields. *Contemporary Math* **319** 223–225.

Peyerimhoff A (1969). Lectures on summability, Springer.

Srinivasan VK (1965). On certain summation processes in the p-adic field. *Indagationes Mathematicae* 27 319–325.