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ABSTRACT 

In this paper we have discussed Magnetohydrodynamic Flow and the electrodynamic field equations. Law 

of dimensional homogeneity and non-dimensional parameters also presented to explain their importance in 

study of fluids and their flow. 
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1.1 INTRODUCTION 

The study Magnetohydrodynamic Flow deals with the flow of electromagnetic fluids in the presence of 

magnetic field. This is type of flows are modelled with the help of fundamental electrodynamic field 

equations. Law of dimensional homogeneity and non-dimensional parameters are of utmost importance in 

study of fluid flows the same is discussed and presented to explain their importance in such phenomenon.  

 

1.2 MAGNETOHYDRODYNAMIC (MHD) FLOW 

 The flow of an electrically conducting fluid in the presence of magnetic field is defined as 

magnetofluiddynamic (MFD) flow. A particular case when fluid is taken to be electrically conducting 

incompressible then the flow is termed as magnetohydrodynamic (MHD) flow instead of MFD flow. 

In MHD flow the equation of state reduces to 

 𝜌 = constant. 

Moreover, the other fluid properties, such as viscosity 𝜇, thermal conductivity 𝑘 and electrical conductivity 

𝜎 are also nearly constant in such a flow. The MFD or MHD flow can be defined completely by sixteen 

electromagnetic field equations along with six fluid dynamics field equations. The electromagnetic field 

equation are as follows: 

(i) Charge conservation equation (one). 

(ii) Maxwell's equation (six). 

(iii) Constitutive equation (six). 

(iv)      Generalized Ohm's law (three). 

(i) Charge conservation equation (Current continuity Equation) 

Current continuity equation is defined as 

 
𝜕𝜌𝑒

𝜕𝑡
+ 𝑑𝑖𝑣 𝐽 = 0         ...(1.2.1) 

where 𝐽 is current density and 𝜌𝑒 is charge density. If 𝜌𝑒 is independent of time then we have 

 𝑑𝑖𝑣 𝐽 = 0  

 which implies 𝐽 is solenoidal and all current in steady state must flow in closed circuits. 

(ii) Maxwell's equations 

 𝐶𝑢𝑟𝑙 𝐸⃗⃗ =  −
𝜕𝐵⃗⃗

𝜕𝑡
                      ...(1.2.2) 

 𝐶𝑢𝑟𝑙 𝐻⃗⃗⃗ =  𝐽 +  
𝜕𝐷⃗⃗⃗

𝜕𝑡
         ...(1.2.3) 
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 𝑑𝑖𝑣 𝐷⃗⃗⃗ =  𝜌𝑒 (Charge continuity equations)     ...(1.2.4) 

 𝑑𝑖𝑣 𝐵⃗⃗ = 0          ...(1.2.5) 

 where 𝐸⃗⃗ is electrostatic field, 𝐵⃗⃗ is magnetic field, 𝐷⃗⃗⃗ is displacement vector, 𝐽 and 𝜌𝑒 are as defined 

above. 

(iii) Constitutive equations 

 𝐷⃗⃗⃗ = ∈  𝐸⃗⃗          ...(1.2.6) 

 𝐵⃗⃗ =  𝜇𝑒 𝐻⃗⃗⃗          ...(1.2.7) 

where ∈ is the electrical permittivity or dielectric constant of the medium and 𝜇𝑒 is the magnetic 

permeability of the medium (fluid). Ordinarily, we may assume that both ∈ and 𝜇𝑒 are constant for given 

isotopic material. 

 

(iv) Generalized Ohm's law 

 𝐽 =  𝜎 (𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) + 𝜌𝑒 𝑣⃗        ...(1.2.8) 

where 𝜎 is the electrical conductivity of the medium. 

1.3 LAW OF DIMENSIONAL HOMOGENEITY 

 This states that a physical phenomenon represented by an analytically derived equation should be 

valid for all system of units. If a group of quantities has a dimensional representation most simply of unity 

when multiplied together, the group is called a dimensionless group. Buckingham's 𝜋-theorem defines that 

how many dimensionless parameters can be formed from a group of variables known to be involved in a 

physical phenomenon. Buckingham's 𝜋-theorem states that the number of independent dimensionless 

groups that may be employed to describe a phenomenon known to involve 𝑛 variable is equal to the number 

𝑛 − 𝑟, where 𝑟 is the number of basic dimensions needed to express the variable dimensionally. In most 

fluid phenomenon, where heat transfer can be neglected, change in pressure 𝑝, length L, viscosity 𝜇, surface 

tension T, velocity of sound c, acceleration of gravity 𝑔, mass density 𝜌, velocity v are the eight important 

variables. Since three basic dimensions are needed to describe the variables so by Buckingham's 𝜋-theorem 

there are 8−3=5 independent dimensionless groups. If at least all but one of the dimensionless groups are 

duplicated for geometrically similar flows, the flow will probably be dynamically similar. This fact 

introduces the possibility of testing a model of some proposed apparatus to study, less expensively, full-

scale performance and possible design variations. 

 In the next section some non-dimensional parameters are presented. 

1.4 NON-DIMENSIONAL PARAMETERS 

(i) Reynolds number - Re 

 Ratio of the inertia force to the friction force, usually defined as  

𝑅𝑒 =  
𝜌𝑉2/𝐿

𝜇𝑉/𝐿2 =  
𝜌𝑉𝐿

𝜇
                    ...(1.4.1) 

is called Reynolds number and is the characteristic parameter of flow, which determine the nature of the 

fluid flow. Beyond the critical value of the Reynolds number, i.e. Re>2300, the fluid flow becomes turbulent 

flow. 

(ii) Euler number - E 

 Ratio of the pressure force to the inertia force is called Euler number and define as 

 𝐸 =  
△𝑝/𝐿

𝜌𝑉2/𝐿
=  

△𝑝

𝜌𝑉2         ...(1.4.2) 

In practical testing work Euler number is used in terms of pressure coefficient. The pressure coefficient is 

equal to twice the Euler number. 

(iii) Prandtl number - Pr 

 This dimensionless parameter is the ratio of the Kinematic viscosity 𝜐, and thermal diffusivity 𝛼 of 

the fluid and is represented mathematically by 
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Pr =  
𝜐

𝛼
=  

𝜇𝐶𝑝

𝜅
                     ...(1.4.3) 

 where 𝜅 the thermal conductivity, and 𝐶𝑝 the specific heat at constant pressure. It is the measure of 

relative importance of heat conduction and viscosity of the fluid. This number is like viscosity and thermal 

conduction is a material property and it thus varies from fluid to fluid, for air Pr=0.7 and for water (at 600 

F) Pr = 7.0 etc. This determines how thick the boundary layers will be for a given external flow field. 

(iv) Grashoff number - Gr 

 In free convection flow system the ratio of buoyancy boundary force to viscous force define a non 

dimensional parameter called Grashoff number, represented by 

 𝐺𝑟 =  
𝑔𝛽(𝑇𝜔−𝑇∞)𝜒2

𝜐2          ...(1.4.4) 

where 𝑔 is the gravitational acceleration, 𝛽 the volumetric coefficient of thermal expansion, 𝑇𝜔 the 

temperature of the wall, 𝑇∞ the free stream temperature and 𝜒 is the distance from the wall. This number 

characterises the free convection flow. 

(v) Modified Grashoff number - Gc 

 Grashoff number for mass transfer through porous medium which is defined as  

 Gc =  
𝑔𝛽/(𝐶𝑠

∗−𝐶∞)

𝑉2𝑈0
         ...(1.4.5) 

where 𝛽/ is the concentration coefficient of volumetric expression, 𝐶𝑠
∗ the concentration at the surface, 𝐶∞ 

the concentration in free stream, 𝑉0 and 𝑈0 are characteristic velocities. 

(vi) Schmidt number - Sc 

 This non-dimensional parameter is encounter repeatedly in the problem of diffusion in flow system, 

just as Prandtl number in the problem of heat transfer in flow system. Schmidt number is defined as  

 Sc =  
𝜐

𝐷
                          ...(1.4.6) 

Where, D is coefficient of diffusivity. 

(vii) Local Skin-friction coefficient - 𝑪𝒇 

 The dimensionless parameters defined as shearing stress on the surface of a body due to fluid 

motion. 

Local skin-friction coefficient 𝐶𝑓 is defined as 

 𝐶𝑓 =  
𝜏𝜔

1

2
𝜌𝑈2

               ...(1.4.7) 

 where 𝜏𝜔 is the local shearing stress on the surface of the body. This dimensionless parameter has 

properties analogous to Euler number. 

(viii) Nusselt number - Nu 

 Nusselt number is defined as the non-dimensional rate of heat transfer i.e. quantity of heat 

exchanged between the body and the fluid. Using Fourier's law of heat conduction and Newton's cooling 

law, the rate of heat transfer in term of Nusselt number Nu is given by 

𝑁𝑢 −  
𝛼(𝜒)𝐿

𝜅
=  − 

𝐿

(𝑇𝜔−𝑇∞)
(

𝜕𝑇

𝜕𝑌
) 𝑌 = 0                           ...(1.4.8) 

where negative sign shows the decrease in temperature. 𝑇𝜔 and 𝑇∞ are temperature of wall and free stream. 

𝜅 is thermal conductivity and 𝑌 is the direction of the normal to the surface of the wall. 𝛼(𝑥) is coefficient 

of heat transfer and L is some characteristic length in the problem. 
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