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ABSTRACT 

In this paper, we focus on the numerical solution for Abel integral equation derived from the plasma 

diagnostics. To solve the Abel integral equation, we use a least squares fitted to a given discrete 

experimental data to represent the input function by nth Bernstein polynomials and reduce the solution of 

the integral equation to a set of numerical integrations by collocation method. Numerical simulations for 

this numerical scheme are performed and the obtained numerical results show the efficiency and accuracy 

of the proposed method. 

 

Keywords: Abel integral equation, Bernstein polynomials, least squares fitting method, Lagrange 

interpolating polynomial 

 

INTRODUCTION 

The subject of this article is numerical solution of Abel’s integral equation of the form 

1

2 2

( )
( ) 2 , 0 1, (  (0) 0)

y

g r r
I y dr y with I

r y
   


 . (1) 

In Eq.(1),
2

( ) (0,1)I y L represents a well behaved known data function, and 
2

( ) (0,1)g r L  is the 

unknown function to be determined. Abel’s integral equation (1) has many applications in various 

physical problems. For example in plasma diagnostics, I(y) is an projected intensity function that can be 

measured only at a discrete set of data point from the outside of the source, while the physically important 

data g(r) is the radial distribution of emission coefficient to be determined(Gueron et al.,1993, Pandey, et 

al.,2014, Deutsch et al.,1982). Although one can get the exact values of g(r) by using the analytical 

inversion of Eq.(1)  
1

2 2

1 ( ) ,0 11( )
r

I y dy r
y r

g r


  



 ,(with g(1)=0), (2) 

where the prime on I denotes differentiation with respect to y. Usually analytical solution (2) fails in 

practical application because the differential operation is an ill-posed problem and its solution does not 

depend continuously on the input data. In other words, the small errors in measured input 

data ( ), 0,1,2,...,
i

I y i m  can be amplified by numerical differentiation and the g(r) is meaningless. 

Consequently in order to yield a stable solution of Eq.(2), many numerical methods have been developed. 

Some of these methods are derivative-free inversion method(Gueron et al.,1993, Deutsch et al.,1982, 

Deutsch et al.,1983), analytic spline Abel inversion method (Gueron et al.,1993), piece-wise cubic spline 

method(Deutsch,et al.,1983), low order interpolation methods(Edels,et al.,1962), least squares fit 

method(Freeman, et al.,1963, Freeman, et al.,1960, Cremers, et al.,1966), Gaussian basis-set expansion 

combined with Tikhonov regularization method(Dribinski, et al.,2002) for 2D Abel integral equation, 

orthogonal polynomials method with least squares fit(Minerbo, et al.,1969), Legendre wavelets expansion 

method(Shuiliang, et al.,2007), a simple analytic representation for experimental data 

method(Deutsch,1983), generalized Taylor-Stieltjes polynomial approximation method.  

As an important mathematical approximation tools, the Bernstein polynomials are defined simply and can 
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represent many functions, therefore they were often used for solving integral equations and differential 

equations(Maleknejad, et al.,2011, Doha, et al.,2011, Mandal, et al.,2007, Maleknejad, et al.,2012). 

Furthermore, they are also used to approximate the solution of Abel’s integral equation of the form(Sadri, 

et al.,2018, Jahanshahi, et al.,2015, Mohsen, et al.,2011, Singh, et al.,2009) 

0

( )
( ) ,0 1,

y g
I dr

y r

r
y y


   

which is also known as singular Volterra integral equation of first kind.  

In this paper we present a new method based on the Bernstein polynomials for the computation of 

emissivity ( )g r  numerically by Eq.(2). This method is simple and effective since the numerical results 

( ), 0,1,...,ig i mr  can be obtained from a set of integrals. Some numerical experiments illustrate the 

stability of the method for the computation of ( )ig r  with various levels of noise on the input data 

( ), 0,1,2,...,
i

I y i m . 

THE BERNSTEIN POLYNOMIALS AND FUNCTION APPROXIMATION 

In this section we will recall the definition of Bernstein Polynomials and their properties(Maleknejad, et 

al.,2011). The Bernstein polynomials of nth degree are defined by 

    ,

0

( ) (1 ) ( 1) , 0,1,..., ,
n i

i n i k k i

i n

k

n n n i
B r r r r i n

i i i


 




      (3) 

where   !
!( )!

n n
i i n i




 denotes the binomial coefficient. Eq.(3) are also called the Bernstein basis 

polynomials, which form a complete basis over interval [0,1]. From Eq.(3) we can find that 
, ( )i nB r (i= 

0,1,…,n) are positivity for all t in [0,1] and the sum 
,0

( )
n

i ni
B r

  equals to one. Consequently, we have 

,
0 ( ) 1.

i n
B r   

Bernstein polynomials have the following approximate properties(Khuri, et al.,2015). For a 

continuous or square integrable function ( )I y defined on [0, 1], we have 

,

0

= ( )( ) lim ( / )
i n

n

n
i

B yI y I i n



 ,            (4) 

and 

( ) ( )

,
0

= ( )( ) lim ( / )
n

r r

i nn
i

B yI y I i n
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
 , r = 1, 2, . . . 

Accordingly Bernstein polynomials yield an uniform approximation of the function ( )I y and its 

derivatives, which is beneficial for the approximation of derivative of ( )I y . 

SOLUTION OF ABEL’S INTEGRAL EQUATION 

In this section we will discuss how to recover the unknown ( )g r by Bernstein polynomials.   

In practice, ( )I y is often given as a set of discrete experimental data on points, ( )j jI I y , in which 

[0,1], 0,1,...,jy j m  and m n . In order to use Eq.(2) to recover ( )g r , we need to known the analytical 

expression of ( )I y . This can be accomplished in advance by the Bernstein polynomials to fit the data 

( , ), 0,1,..., .j jy I j m  

Taking a truncated series of Eq.(4), an approximation of ( )I y  can be written as  

0 0, 1 1, ,
( )( ) ( ) ( ) ( ) ... ( ) ,

T

n n n n n
y CI y I y c B y c B y c B y     %  (5) 
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where 

0 1
( , ,..., ) ,

n

T
C c c c  

0, 1, ,
( ) ( ( ), ( ),..., ( )) .

n n n n

T
y B y B y B y   

Eq.(5) can also be written as in matrix form:  
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1, 1n n

D R
 

  and its elements   
,

( 1) ,

0 .

j i

i j

n i
i j

d i j
i j


 








 

The unknown vector C in Eq.(6) can be calculated by least squares fitting method of the form (5). 

Inserting the experimental data ( , ), 0,1,...,j jy I j m  in Eq.(6), we get  

 2
1, , ,..., , 0,1,..., .

n

j j j j
I y y y DC j m           (7) 

Writing Eq.(7) in matrix form as 

,AC I                                                                   (8) 
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0 1 m( , ,..., ) .TI I I I  

If the points jy  satisfies 0 1 ... ,my y y m n    ,then T is a matrix of rank 1n and the unknown vector 

C can be solved by
1

( )
T T

C A A A I


 . The desirable approximate ( )I y%  to ( )I y  in Eq.(6) is known and 

the differentiation of ( )I y  is given approximately as follows:   
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 2

11, , ,..., .ny y y D DC  

Hence we obtain an approximate solution ( )g r  to analytical expression ( )g r  as follows:  

 2

1 1

2 2 2 2
1

1, , ,...,1
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1 1( ) ( )

n
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y y y
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1
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The integrals in the right hand of Eq.(9) can be calculated explicitly(Shuiliang,et al.,2007) by following 

integral: 
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22 2

1 1 1 1 1
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where 

  1 1

0
, , (1 )

z
p qbeta z p q y y dy   . 

If only the values of ( )ig r  on a set of discrete points , 0,1,...,[0,1]i i mr   are desired, we can substitute 

ir r  in Eq.(9) to get the results. Note that for special point r=0, Eq.(10) is numerically impractical 

and (0)g  can be calculated by Lagrange interpolating polynomial with points ( ( , ( )), 1,2i ir g r i ):   

2 1
1 2

1 2 2 1

(0) ( ) ( )
( ) ( )

r r
g g r g r

r r r r
 

 
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NUMERICAL ILLUSTRATIONS 

In this section, we give two examples for computation of emission coefficient functions as follows: 

(1) 
2( )4

1 3
( ) rg r e   , 

(2) 
2 2 2

2( ) (1 ) (1 12 )g r r r   . 

The corresponding simulated input data ( ), 1,2k jI y k  are calculated from Eq.(1) for a given 

( ), 1, 2
k

g r k   by numerical integration method with m=30 and / , 0,1,2,..., .jy j m j m  The task here is to 

calculate the values of ( ), 1,2kg r k   at nodes / , 0,1,...,ir i m i m   by the proposed method. The 

accuracy of the results is given by the mean standard deviation formula(RMS): 

0

1
221

1
( ) ( ) .

m

i

k i k iRMS
m

g r g r






 
 

 
  

To test the stability of the method, we add the random error to the simulated ( )
k j

I y  data, i.e. replacing 

( ) ( )(1 10 ),( 1,2, 1,2,3)l l

k j k jI y I y k l      with ( )
k j

I y , where  is a normal distribution with mean 0 

and standard deviation 1 and l  is an error level. Note that 0l means that ( )
l

k j
I y



 is an error free input 

( )
k j

I y . The recovered emission coefficient is denoted ( )
l

k ig r


.  

All the numerical results are obtained with MathCAD2001. 

 

 

Case 1. Consider the Eq.(1) with 
2( )4

1 3
( ) rg r e   . Fig.1 summarizes the simulated input data

1 ( )l

jI y  

with 0,1,...,j m and 30.m  The figures of the recovered 
1

( )
l

ig r


 by 5
th
 Bernstein polynomials are 

plotted in Fig.(2), while the figures of the 
1

( )
l

ig r


 recovered by 10
th
 Bernstein polynomials are plotted in 

Fig.(3). In panel(a) of Figs.2,3, we see the reconstruction of 1( )g r  is excellent for the noise level 0l  . 

Panel(b)-(d) of Figs.2,3 show the recovered 
1

( )
l

g r


 with 1,2,3l   in the case of noisy input data(see 

Fig.1bcd). In this example the reconstruction shown in Panel(b)-(d) of Figs.2,3 exhibit the good stability 

of the inversion algorithm, i.e. the dotted line(recovered 
1

( )
l

g r


) fits well to the solid line(exact 1( )g r ) as 

the error level decreases.  
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Fig.1 The input data 
1 ( ), 0,1,...,30, 0,1,2,3l

jI y j l   (dotted lines) and the exact input data function 

1 ( ), [0,1]I y y (solid lines) 
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Fig.2  The recover 
1

( ), 0,1,...,30
l

ig r i


 (dotted lines) with 0,1,2,3l   by 5th Bernstein polynomials and 

the exact 1( ), [0,1]g r r (solid lines) 
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Fig.3  The recover 
1

( ), 0,1,...,30
l

ig r i


 (dotted lines) with 0,1,2,3l   by 10th Bernstein polynomials and 

the exact 1( ), [0,1]g r r (solid lines) 

Case 2. In this example we consider the Eq.(1) with 
2 2 2

2
( ) (1 ) (1 12 )g r r r   . The simulated input 

data
2 ( ), 0,1,2,3l

jI y l   with 0,1,...,j m and 30m  are plotted in Fig.4 respectively. The results 

recovered by 5
th
 and 10

th
 Bernstein polynomials are shown in Fig.5 and Fig.6 respectively. Panel(a) of 

Figs5,6 refer to the case 0l  (i.e. error free), whereas Panel(b)-(d) of Figs 5,6 exhibit the results in the 

case of input data contaminated with error levels 0,1,2,3l  . From Figs.5,6, we can clear see that the 

proposed method works well and the disagreements between the exact solution(solid line) and the 

numerical solution(dotted line) are getting reduced as we decrease the error level l . 
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Fig.4 The input data 

1 ( ), 0,1,...,30, 0,1,2,3l

jI y j l   (dotted lines) and the exact input data function 
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1 ( ), [0,1]I y y (solid lines) 
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Fig.5  The recover 
1

( ), 0,1,...,30
l

ig r i


 (dotted lines) with 0,1,2,3l   by 5th Bernstein polynomials and 

the exact 1( ), [0,1]g r r (solid lines) 
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Fig.6  The recover 
1

( ), 0,1,...,30
l

ig r i


 (dotted lines) with 0,1,2,3l   by 5th Bernstein polynomials and 

the exact 1( ), [0,1]g r r (solid lines) 

 

Finally the RMS obtained with our method for these two examples, using 5
th
 and 10

th
 Bernstein 

polynomials for input data 1 ( ), 0,1,...,30, 0,1,2,3l

jI y j l   , are given in Table1. For both cases, we can 

find that the accuracy increases rapidly upon increasing the degree of Bernstein polynomials. Further, for 
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the fixed degree of Bernstein polynomials, we also can see that the decrease of RMS on decreasing the 

error level. 

Table 1. RMS for sets of the recovered 
1

( ), 0,1,...,30
l

ig r i


 bwith different error level l . 

 Case 1 Case 2 

 n=5 n=10 n=5 n=10 

0l   0.0151 0.0009 0.0439 0.0008 

1l   0.0344 0.1569 0.0513 0.0511 

2l   0.0159 0.0085 0.0474 0.0073 

3l   0.0152 0.0011 0.0437 0.0016 

 

CONCLUSIONS 

We have presented a new method for the computation of the inverse Abel integral equation. The solution 

is expressed in terms of the sum of nth Bernstein polynomials and can be computed through a series of 

numerical integrations. This makes the method particularly appropriate for the case that the input 

experimental data are given on (even nonequispaced) points. Two examples have been presented and the 

results show the stability and the accuracy of the method for the reconstruction of emission coefficient 

with different noise of error level on the data. 
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