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ABSTRACT 

Various methods to solve linear fractional programming problem is discussed in this paper. LFP 

problem with only two unknown variables can be solved graphically subject to constraints.  The 

equations and the above method are elaborated in detail via mathematical equations and 

inequalities. In order to optimize some absolute criteria, Simplex Method comes in picture. For 

example Profit gained by some company,  number of full time employees etc fall under this 

category. The simplex Method includes a function Q(x) which is maximized followed by 

constraints and iterations discussed painstakingly. In the end the sum of linear plus LFP problem 

is investigated theoretically. 

 

Keywords: fractional programming, feasible and infeasible, Optimal Vertex, global maximum 

 

1.1  SOLUTION OF LFP 

 There are many well known methods to solve linear fractional programming problems. 

Some of them are as follows: 

 (i)  Graphical Method 

 (ii)  Simplex Method 

 (iii)  Charnes & Cooper's Transformation 

 (iv)  Dinkelbach Algorithm 

 (v)  Wolfe's Parametric Method 

 (vi)  Kanti Swarup Method 

 (vii) Ratio Algorithm, etc. 

 We now go on to discuss how any LFP problem can be solved by these methods with the 

help of numerical example. 

1.1(a) The Graphical Method 

 We discuss how any LFP problem with only two variables can be solved graphically. Let 

us consider the following LFP problem with two unknown variables: 

Optimize           1 1 2 2 0

1 1 2 2 0

( )
( )

( )

N x n x n x n
Q x

D x d x d x d

+ +
= =

+ +
                …(1.1.1) 

 Subject to,  
1 1 2 2 , 1,2,...,i i ia x a x b i m+  =            ...(1.1.2) 

 and .                  
1 20, 0x x                     …(1.1.3) 
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(1) The Single Optimal Vertex 

 Let us suppose that constraints (1.1.2) and (1.1.3) define feasible set  S shown by shading 

in figure -1.1. 

 
Figure 1.1: Two-variable LFP problem-Single Optimal Vertex. 

Let ( )Q x K= , where K is an arbitrary constant. 

or   1 1 2 2

1 1 2 2

n x n x n
K

d x d x d

+ +
=

+ +
     [from (1.1.1)] 

 or,  
1 1 1 2 2 2 0 0( ) ( ) ( ) 0n Kd x n Kd x n Kd− + − + − =   

 For any real value of K, the above equation represents all the points on a straight line in 

the two dimensional plane. If this so-called level-line (or isoline) intersects the set of feasible 

solutions S, the points of intersection are the feasible solutions that give the value  K to the 

objective function ( )Q x . Changing the value of K translates the entire line to another line that 

intersects the previous line in focus point (point F in figure-1.1) with coordinates defined as 

solution of system 

1 1 2 2 0

1 1 2 2 0

n x n x n

d x d x d

+ = − 


+ = − 

      …(1.1.4) 

In other words, in the focus point F, straight lines with equations  and  intersect one another. 

  If lines  ( ) 0N x =  and ( ) 0D x =  are not parallel with one another, then the 

determinant of system (1.1.4) is not equal to zero and the system has a unique solution 

(coordinates of focus point F). In the other case, if lines ( ) 0N x =  and ( ) 0D x =   are parallel 

with one another, the determinant of system (1.1.4) is equal to zero and the system has no 

solution. It means that there is no focus point and all level-lines are also parallel with one 

another.  

  Now we return to the case, when level-lines are not parallel with one another. Taking an 

arbitrary value of K, we draw a line ( )Q x K=   shown in figure-1.1. 

  Let us rewrite equality   1 1 2 2

1 1 2 2

( )
n x n x n

Q x K
d x d x d

+ +
= =

+ +
as   follows: 
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1 1 0 0
2 1

2 2 2 2

n Kd n Kd
x x

n Kd n Kd

− −
= − −

− −
 

 If 'k' be the slope of the above line (level line), then   

1 1

2 2

n Kd
k

n Kd

−
=

−
 

  Therefore, in such a case, the slope of level-line  ( )Q x K=    depends on value K of 

objective function ( )Q x   , and is a monotonic function on K because 

1 2 2 1

2

2 2( )

dk d n d n

dK n Kd

−
=

−
 

This implies that the sign of 
dk

dK
  does not depend on the value of K, so we can write  

   
1 2 2 1sign sign{ } const.

dk
d n d n

dK

 
= − = 

 
    

 It means that when rotating level-line around its focus point F in positive direction (i.e. 

counter clockwise), the value of objective function ( )Q x  increases or decreases depending on 

the sign of expression 
1 2 2 1( )d n d n−  . 

 Obviously, figure-1.1 represents the case when rotating level-line in positive direction 

leads to growth of value ( )Q x  . When rotating level-line around its focus point F the line 

( )Q x K=  intersects feasible set S in two vertices (extreme points) x
  and x

.    

In the point x
 , objective function ( )Q x  takes its maximal value over set S and in the point 

x
, it takes its minimal value.  

(2) Multiple Optimal Solutions 

 
Figure 1.2: Two-variable LFP problem-Multiple Optimal Solutions. 

Multiple Optimal Solutions may occur that when rotating level-line on its focus point F the level-

line ( )Q x K=  captures some edge of set S (edge e in figure-1.2). In this case the problem has 
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an infinite number of optimal solutions (all points x of edge e) that may be represented as a linear 

combination of two vertex points  x
 and  x

: 

(1 ) , 0 1x x x   = + −    

(3) Mixed Cases 

If feasible set S is unbounded and an appropriate unbounded edge concurs with extreme level-

line (figure-1.3), then the  problem has an infinite number of optimal solutions, one of them in 

vertex x
 and others are non-vertex points of unbounded edge. We should note here that among 

these non vertex points, there is one infinite point too. This is why we say in this case that the 

problem has 'mixed' solutions, i.e. finite optimal solution(s) and asymptotic one(s). 

 
Figure 1.3: Two-variable LFP problem-Mixed Cases. 

(4) Asymptotic Case 

 
Figure-1.4: Two-variable LFP problem- Asymptotic case 

 

Suppose the constraints (1.1.2) and (1.1.3) define an unbounded feasible set S shown in figure-

1.4. It may occur that when rotating level-line, after an extreme vertex (vertex x
  in figure-1.4) 
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we can rotate the level-line a bit more in the same direction because the intersection between 

level-line and feasible set S is still not empty ( line  ( )Q x K=  in figure-1.4). In this case we 

can rotate level-line until it becomes parallel with the appropriate unbounded edge (edge e in 

figure-1.4).  

 

If such a case occurs we should compute the value of objective function ( )Q x  in infinite point x 

of the unbounded edge e, i.e. the following limit: 

lim ( )
x
x e

Q x
→


 

Depending on the value of this limit, the maximal (minimal) value of objective function ( )Q x   

may be finite or infinite. 

. 

To illustrate the Graphical method, we consider the following numerical examples: 

Example: Graphical Method (Bounded feasible set) 

 Optimize        1 2

1 2

5
( )

3 2 15

x x
Q x

x x

+ +
=

+ +
  

 Subject to,   
1 23 6x x+  , 

1 23 4 12x x+              

and   
1 20, 0x x  .    

Solution Approach: First, we have to construct a feasible set. The convex set S of all feasible 

solutions for this problem is shown as the shaded region in figure-1.5. 

 
Figure 1.5: Graphical example - Bounded feasible set. 

 Then, to determine coordinates of the focus point F, we solve  the system 

1 2

1 2

5

3 2 15

x x

x x

+ = −

+ = −
 

which gives us ( 5, 0)F = − . Level-lines being rotated around focus point F give the following 

extremal points 

  (0,3), (2, 0)A B= =  and O (0,0)=  ,  

 

Q(
) =x

max

X2

X1

max

(-5, 0)F

O C

(0, 3)A

(2, 0)B

S
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with objective values 

( ) 8 / 21, ( ) 7 / 21, and (O) 5 /15Q A Q B Q= = = ,  

resectively. So,  the objective function ( )Q x  reaches its maximal value in the point (0,3)A =  , 

while the minimization problem has multile optimal solutions: two extremal  points (2,0)B =   

and O (0,0)= , and all points x  representable as a linear combination of B and O. 

Example: Graphical Method (Asymptotic Case) 

Optimize     1 2

1 2

2 1
( )

4

x x
Q x

x x

− +
=

+ +
  

Subject to,       
1 2 2x x+  , 

1 22 4x x−   

and               
1 20, 0x x    . 

 Set S of all feasible solutions for this problem is shown in figure-1.6. 

 
Figure 1.6: Graphical example - Unbounded feasible set. 

On solving the system, 
1 22 1x x− = − , 

1 2 4x x+ = −  

and     
1 20, 0x x   

we obtain a focus point ( 3, 1)F − − . Then rotating level lines around focus point F in both 

directions (i.e. clockwise and counter clockwise) we realize that the maximization problem has 

an optimal solution on the point whose co-ordinates are (4, 0)   where 
5

( )
8

Q x =  , and the 

minimization problem has an asymptotic optimal solution in point whose co-ordinates are 

(0, )  on the axes OX2   

   
2

2min ( ) lim (0, ) 2
x S x

Q x Q x
 →

= = −      

1.1(b) The Simplex Method 

 In 1947, George Dantzig [8] developed an efficient method, the simplex algorithm, for 

solving linear programming problems. Since the development of the simplex method, LP has 

been used to solve optimization problems anywhere where there appears a necessity of 

optimizing some absolute criteria. It might be, for       example, cost of trucking, profit gained by 

some company, number of full-time employees, cost of nutrition rations, etc. 

 X2

X1

S

max
(-3,-1)F

Q( ) =x max

O

-2

2

2

4
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 Later, in 1960, Bela Martos [10], [22] upgraded the simplex method for solving LFP 

problems formulated in the following standard form  

Maximize      

0

1

0

1

( )
( )

( )

r

j j

j

r

j j

j

n x n
N x

Q x
D x

d x d

=

=

+

= =

+




  ...(1.1.5) 

Subject to,      
1

, 1, 2,...,
n

ij j i

j

a x b i m
=

= =   ...(1.1.6) 

and              0, 1, 2,...,jx j r =    ...(1.1.7) 

where ( ) 0D x     for all 1 2( , ,..., )T

rx x x x=  , which satisfy constraints (1.1.6)–(1.1.7). We 

assume fessible set S is a regular set, i.e. is non-empty and bounded. 

 The following simplex methods can be used to solve the LFP problem in which its 

objective funtion must be maximized. The    solution of a minmization LFP problem  may be 

obtained in the same way by substituting the original minimization  problem with its appropriate 

maximization equivalent. 

 (i) The Standard Simplex Algorithm 

 (ii) The Big-M method 

 (iii) The Two-Phase Simplex Method 

 (iv) The Bounded-Variables Simplex Method 

  The Standard Simplex Algorithm is an iterative procedure (step by step ) for finding the 

optimal solution to the problem. To illustrate the Simplex method we consider the following LFP 

problem. 

Example: Simplex Algorithm 

Maximize  

(1)

1 2

(2)

1 2

5
( )

3 2 15

x x Q
Q x

x x Q

+ +
= =

+ +
        

Subject to,    
1 23 6x x+  ,  

1 23 4 12x x+   

 And  
1 20, 0x x   . 

Solution Approach: On introducing the slack variables  and, the  problem is reduced into the 

standard form as follows: 

Maximize   

(1)

1 2

(2)

1 2

5
( )

3 2 15

x x Q
Q x

x x Q

+ +
= =

+ +
        

Subject to,      
1 2 3 43 0 6x x x x+ + + = ,   

   
1 2 3 43 4 0 12x x x x+ + + =  

And   
1 2 3 4, , , 0x x x x     

Iteration 1 
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Computation of Iteration 1 

  
(1) 0 5 5B BQ n x n= + = + =  and 

(2) 0 15 15B BQ d x d= + = + =  

Here  initial basic feasible solution is 
1 20, 0x x= =  . 

Now we find  
(1)

j B j jn x n = −  

and   
(2)

j B j jd x d = −   

   
(1)

1 1 1 (0, 0) (3, 3) 1 1Bn x n  = − = − = −  

  
(1)

2 2 2 (0, 0) (1, 4) 1 1Bn x n  = − = − = −  

  
(2)

1 1 1 (0, 0) (3, 3) 3 3Bd x d  = − = − = −  

   
(2)

2 2 2 (0, 0) (1, 4) 2 2Bd x d  = − = − = −  

Also,  
(2) (1) (1) (2)( ) ( )j j j j jQ Q n Q Q d = − − −  

   (2) (1) (1) (2)

1 1 1( ) ( )j jQ Q n Q Q d = − − −  

  15(0 1) 5 (0 3) 0= − − − =      

and   
(2) (1) (1) (2)

2 2 1 2 2( ) ( )Q Q n Q Q d = − − −  

         15(0 1) 5 (0 2) 5= − − − = −  

  

We  observe 
2 that  is minimum. Therefore, 

2x  is entering vector. For outgoing vector, we 

calculate 

j
n →  1 1 0 0  

jd →  3 2 0 0 

 

Basic Variables 
Bd  

Bn  
Bx  

1x  
2x  

3 1( )x   
4 2( )x   

Min

2

Bx

x

 
 
 

 

3x  0 0 6 3 1 1 0 6 / 3  

4x  0 0 12 3 4  
0 1 12 /3  

1−  1−  
 

0 0 (1)

j  

3−  

 

2−  
 

0 0 (2)

j
  

(1) 5B BQ n x n= + =  

(2) 15
B B

Q d x d= + =                                 

(1)

(2)

1

3

Q
Q

Q
= =  

0 5−  

  

0 
 

0 

  
j  
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min Bi

ij

x

x

 
 
  

, where  1,...,4j =  

  
6 12 12

min min , 3
1 4 4

Bi

ij

x

x

   
= = =   

   

 [for 2j =  ] 

Corresponds to 
22 4,x x   is outgoing vector and 4 is the key element in the basis. So, on 

introducing 
2x  and dropping 

4 2( )x   , we get the following iteration table 

Iteration 2 

 
Computation 

 Since all 0j  , therefore the solution is optimal. 

 Also, 
1 2 3 40, 3, 3 and 0x x x x= = = = . 

   Maximize  ( ) 8/ 21Q x =  

 

1.1(c) Charnes & Cooper's Transformation 

 In 1962, A. Charnes and W.W. Copper [16] showed that any linear fractional programming 

problem with a bounded set of feasible solutions may be converted to a linear programming 

problem. General form of  the LFP problem  is 

Optimize 
1

1

( )
( )

( )

r

j j

j

r

j j

j

n x n
N x

Q x
D x

d x d

=

=

+

= =

+




,    ( ) 0D x   ...(1.1.8) 

j
n →  1 1 0 0  

jd →  3 2 0 0 

 

Basic Variables 
Bd  

Bn  
Bx  

1x  
2 2( )x   

3 1( )x   
4x  

Min

2

Bx

x

 
 
 

 

3x  0 0 3 9 / 4  0 1 1/ 4−   

2x  2 1 3 3/ 4  1 0 1/ 4   

1/ 4−  0 

 

0 1/ 4  (1)

j
  

3/ 2−  

 

0 
 

0 1/ 2  (2)

j
   

(1) 3 5 8
B B

Q n x n= + = + =  

(2) 6 15 21
B B

Q d x d= + = + =                               

(1)

(2)

8

21

Q
Q

Q
= =  

27 / 4  0 

 

0 

 
5 / 4  

 
j  
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 Subject to, 
1

, 1, 2, ...,
r

ij j i

j

a x b i m
=

 =                ...(1.1.9) 

and       0, 1, 2, ... ,jx j r =     ...(1.1.10) 

 Let us introduce the following new variables: 

( )

j

j

x
t

D x
=  and 0

1

( )
t

D x
=  

 where   
0

1

( )
r

j j

j

D x d x d
=

= +                          ...(1.1.11) 

 Using these new variables , 0,1,...,jt j r= , we can rewrite the original objective 

function Q(x)  in the following form 

   Optimize 
0

( )
r

j j

j

L t n t
=

=             ...(1.1.12) 

 Since ( ) 0,D x x S   , we can multiply constraints  (1.1.9) and (1.1.10) by  
1

( )D x
, 

so we obtain the  following constraints 

      
0

1

0,
r

i ij j

j

bt a t
=

− +   1, 2,...,i m=     ...(1.1.13) 

and    0, 0,1, ...,jt j r =          ...(1.1.14) 

 The connection between the original variables jx  and the new variables jt  will be 

completed if we multiply equality (1.1.11) by the same value 
1

( )D x
, and then append the new 

constraint to the new problem 

     
0

1
r

j j

j

d t
=

=       ...(1.1.15) 

 Here  the new problem (1.1.12)–(1.1.15) will be referred to as a linear analogue of the 

LFP problem. 

 The above transformation of variables also establishes a "one one " connection 

between the original LFP problem (1.1.8)–(1.1.10) and its linear analogue (1.1.12)–(1.1.15) .  

 Since feasible set S is bounded, function D(x) is linear and ( ) 0,D x x S   , the 

following lemma and theorem plays the role of foundation of  Charnes & Cooper's 

transformation. 

The connection between the optimal solutions of the original LFP problem and its linear 

analogue  seems to be very useful and at least from the point of view of theory     allows to 

substitute the original LFP problem with its linear analogue and in this way to use LP theory and 

methods. However, in practice, this approach based on the Charnes & Cooper's transformation 
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may not always be utilized. The problems arise when we should transform the LFP problem with 

some special structure of constraints, for example transportation problem, or assignment problem 

or any other problem with a fixed structure of constraints, and would like to apply appropriate 

special methods and algorithms. Indeed, if in the original LFP problem we have r unknwon 

variables and m main constraints, then in its linear analogue we obtain r + 1 variables and  m + 1 

constraints. Moreover, in the right hand side of (1.1.13) we have no vector b. Instead of the 

original vector b we have a vector of zeros. 

 

Example: Charnes & Cooper's Transformation 

 Maximize    1 2

1 2

2 6

1

x x
Z

x x

+
=

+ +
 

 Subject to,  

1 2 3 4

1 2 3 4

1 2 3 4

0 4

3 0 6

0 0 0

x x x x

x x x x

x x x x

+ + + =

+ + − =

− + + =

 

 and              
1 2 3 4, , , 0x x x x  .  

 

Solution Approach: 

Since 
1 2, 0x x  , therefore denominator of the objective function will always be nonnegative. 

 Let 

1 2

1

1
t

x x
=

+ +
 and 

i iy tx= , where 1,...,4i = , then  the objective function of  the 

above problem reduces as follows 

 Maximize   

1 22 6

1/

y y

t t
Z

t

   
+   

   =  

           
1 22 6y y= +  

Similarly the constraints of the above problem will be reduced as  follows 

 Constraint-I  
1 2 3 4x x x+ + =  

            1 2 3 4
y y y

t t t
+ + =    [

i iy tx= , where 1,...,4i = .] 

     
1 2 3 4 0y y y t+ + − =       

   

Constraint-II  
1 2 43 6x x x+ − =  

     
1 2 43 6 0y y y t+ − − =  [

i iy tx=  ,where 1,...,4i = .] 
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Constraint-III  
1 2 0x x− =  

     
1 2 0y y− =   [

i iy tx= , where 1,...,4i = .] 

 Also, we have,    

1 2

1

1
t

x x
=

+ +
   

     
1 2( 1) 1t x x+ + =       

      
1 2 1tx tx t+ + =    

      
1 2 1y y t+ + =  [

i iy tx= , where 1,...,4i = ] 

  

Therefore, the given problem reduces into the Linear Programming problem(Standard form for 

Simplex Method) as follows:  

  

Maximize  
1 2 3 4 1 2 32 6 0 0 0Z y y y y t MA MA MA= + + + + − − −  

 Subject to  
1 2 3 4 0y y y t+ + − =    

                       
1 2 4 13 6 0y y y t A+ − − + =  

    
1 2 2 0y y A− + =              

  
1 2 3 1y y t A+ + + =  

 and     0, 1, ..., 4jy j =     

 Also   0,t   
1 2 3, , 0A A A       

 and     
1 2 3, ,A A A  are artificial variables. 

 

Initial Simplex Tableau  

 

 
j

C →  2 6 0 0 0 M−  M−  M−  

BC  
BX  b  

1y  
2y  

3y  
4y  t  

1A  
2A  

3A  

0 
3y  0 1 1 1 0 4−  0 0 0 

M−  
1A  0 3 1 0 1−  6−  1 0 0 

M−  
2A  0 1  1−  0 0 0 0 1 0 

M−  
3A  1 1 1 0 0 1 0 0 1 

j j
Z C− →  5 2M− −  

  

2M− −  0 M  5M  0 0 0 
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Final Simplex Tableau 

 
Computation 

 Since all 0j jZ C−  . The optimal solution is 

   
1 2 3 4

2 2 2 1
, , 0, and

5 5 5 5
y y y y t= = = = = . 

 Therefore,  1
1

2/5
2

1/5

y
x

t
= = = , 2

2

2/5
2

1/5

y
x

t
= = = , 3

3

0
0

1/5

y
x

t
= = = , 

   4
4

2/5
2

1/5

y
x

t
= = =  and  

1 2

1 1

1 5
t

x x
= =

+ +
[

1 22, 2x x= = ] 

Hence, the optimal solution is 

   1 2

1 2

2 6 2 2 6 2 16

1 5 5

x x
Z

x x

+  + 
= = =

+ +
. 

 

 

1.1(d) Dinkelbach's Algorithm 

 One of the most popular and general strategies for fractional programming (not necessary 

linear) is the parametric approach described by W. Dinkelbach. In the case of linear-fractional 

programming, this method reduces the solution of  a problem to the solution of a sequence of 

linear programming problems. 

Consider the common LFP problem (1.1.1)–(1.1.3) and function 

   ( ) ( ) ( ) max ,
x S

F N x D x R  


= −  , 

where S denotes the feasible set of (1.1.1)–(1.1.3). 

 

 
j

C →  2 6 0 0 0 M−  M−  M−  

BC  
BX  b  

1y  
2y  

3y  
4y  t  

1A  
2A  

3A  

0 
3y  2

5
 

0 0 8

5
 

1 0 - - - 

6 
2

y  2

5
 

0 1 1

10
 

0 0 - - - 

2 
1

y  2

5
 

1 0 1

10
 

0 0 - - - 

0 t  1

5
 

0 0 1

5

−
 

0 1 - - - 

j jZ C− →  0 0 2

5
 

0 0 - - - 
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Dinkelbach's Algorithm 

Step 1:  Take 
( )0

x S , compute ( )
( )( )
( )( )

0

0
1

N x

D x
 = , and let 1k = ; 

Step 2:  Determine 
( ) ( ) ( ) ( ) arg max
k k

x S
x N x D x


= − ; 

Step 3:  If 
( )( ) 0
k

F  = , then 
( )* k

x x=  is an optimal solution; Stop; 

Step 4:  Let 
( )

( )( )
( )( )

1

k

k

k

N x

D x


+
= ; let 1k k= + ; go to Step 2; 

Example: Dinkelbach's Algorithm    

 Maximize ( )
( )
( )

1 2

1 2

5

3 2 15

N x x x
Q x

D x x x

+ +
= =

+ +
 

 Subject to,       
1 2

1 2

3 6,

3 4 12,

x x

x x

+ 

+ 
   

 and                . 
1 20, 0x x       ...(1.1.16) 

Solution Approach 

Step 1: Since vector ( )0,0
T

x =  satisfies all constraints of the problem, we may take it as a 

strating point 
( )0

x S . So, for 
( ) ( )0

0,0
T

x = , we obtain 

   
( )

( )( )
( )( )

0

1

0

5 1

15 3

N x

D x
 = = = , 

Step 2: Now, we have to solve the following linear programming problem 

   ( ) ( ) ( ) ( ) ( )1

2

1 1
Max.

3 3
N x D x N x D x x− = − = →  

subject to constraints in (1.1.16). 

Solving this problem, we obtain 

   
( ) ( ) ( )( )1 1

0,3 , 1
T

x F = = . 

Step 3: Since 
( )( )1

0F   , we have to perform 

Step 4: We have to calculate 

   ( )

( )( )
( )( )

1

2

1

1 3 5 8

2 3 15 21

N x

D x


 +
= = =

 +
, 
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then to put 1 2k k= + =  and the process repeated till  

Step 2: Solve the following LP problem: 

   ( ) ( ) ( )2
N x D x−  

   
1 2

8 8 8
1 3 1 2 5 15

21 21 21
x x

     
= −  + −  + −      
     

 

   
1 2

1 5 5
Max.

7 21 7
x x= − + − →  

subject to constraints in (1.1.16) 

 Solving  the above problem, we obtain 
( ) ( )2

0,3
T

x =  with 
( )( )2

0F  = . 

Step 3: Since 
( )( )2

0F  = , vector 
( )2*x x=  is the optimal solution. Therefore, the procedure is 

stopped.  

 In accordance with the algorithm, the optimal solution of our LFP problem is  

( )* 0,3
T

x =  with optimal objective value 
*( ) 8/ 21Q x = . 

 

1.2 LINEAR PLUS LINEAR FRACTIONAL PROGRAMMING PROBLEM  

 The sum of a linear and linear-fractional function is investigated in terms of quasi 

convexity and quasi-concavity. The optimization problem 

  Sup ( )
T

T

T

b x
x S q x a x

c x

 
 = + 

 
, 

nS    convex,  0Tc x  . 

which arises when a compromise between absolute and relative terms is to be maximized. For 

linear programs, b = 0 and linear fractional programs, a = 0.  

  The above optimization problem can often be solved by a convex programming 

procedure if a local maximum is a global maximum and a simplex like procedure can be applied 

if a local  maximum attained at an extreme point of S. 
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