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ABSTRACT 

There are distinct fields in real world which face the problem of optimization like in the area of financial 

and corporate planning has to optimize its debt/equity ratio. Similarly in health care and hospital planning 

requires the need to optimize its nurse/patient ratio and there are many more realms which deal with the 

same quandary.  Optimization could be modelled as a fractional programming problem which is a 

generalization of linear programming problem.  

 The mathematical formation of LFP is discussed in detail by optimizing an arbitrary function Q(x) 

with some constraints. The feasible and infeasible concept of LFP is also explained in the paper. 

 Further it is discovered that the LFP problem is said to be in standard form if all the constraints are 

equations and all the unknown variables are nonnegative. For the general form of LFP the constraints are 

<= inequalities and rest is same. The intricacies of the topic is well elaborated with the help of formulas 

and mathematical expressions. 
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1.1 INTRODUCTION 

The modern theory of optimization that we see today essentially began with the discovery of the simplex 

method for linear programming problem (LPP) in the late 1940's. In the modelling of the real-world 

problems like financial and corporate planning, production planning, marketing and media selection, 

university planning and student admissions, health care and hospital planning, air force maintenance units, 

bank branches, etc. frequently may be faced up with decision to optimise debt/equity ratio, profit/cost, 

inventory/sales, actual cost/standard cost, output/employee, student/cost, nurse/patient ratio etc.  with 

respect to some constraints.  

 In 1960's, it was realized that the above problems could not be modelled as a linear programming 

problem where as they could be model as an Fractional Programming Problem and its applications. 

1.2 FORMULATION OF LFP 

 In 1960, Hungarian Mathematician Bèla Martos [19] formulated and considered a so-called 

hyperbolic programming problem, which in the English language special literature is referred as a linear- 

fractional programming problem (LFP). The common problem of LFP may be formulated as follows: 
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… (1.2.1). 

where 1 2m m m  . Here and in what follows we suppose that ( ) 0D x  ,  1 2, , , rx x x x S =  , 

where S denotes a set of feasible solutions defined by constraints given in (1.1.1). 

 Since the denominator ( ) 0D x  ,  so we can assume ( ) 0D x  . In the case of ( ) 0D x  , we can 

multiply numerator   N(x) and denominator D(x) of objective function Q(x) by ‘–1’. 

 Here we will consider such linear fractional programming problems that satisfy condition ( ) 0D x 

. We also suppose that the constraints 
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in system (1.2.1) are linearly independent and so the rank of matrix [ ]ij m rA a =                is equal to m.  

 Therefore, in an LFP problem, our aim is to find such a vector  of decision variables 

0, 1, 2, ... ,jx j r = , which  

 (i)  maximizes (or minimizes) function Q(x), called objective function,   

 (ii) satisfies a set of main constraints  
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and sign restrictions 0, 1, 2, ... ,jx j r = , at the same time. 

 

 

1.3 DEFINITIONS 

 We introduce the main conceptions that will be used throughout the rest of the work. 

 1.3.1 If given vector ( )1 2, ,..., rx x x x=  satisfies constraints 
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   and 0, 1, 2, ... ,jx j r = ,  we will say that vector x is a    

 feasible solution of LFP problem (1.2.1). 

 1.3.2 If given vector ( )1 2, ,..., rx x x x=  is a feasible solution of maximization (minimization) 

LFP problem (1.2.1), and provides maximal (minimal) value for objective function Q(x) over the feasible 

set S, we say that   vector x is an optimal solution of maximization (minimization) linear - fractional 

programming problem (1.2.1). 

 1.3.3 A maximization (minimization) LFP problem is solvable, if its feasible set S is not empty 

and objective function Q(x) has finite upper (lower) bound on S.   

 1.3.4  If the feasible set S is empty, we say that the LFP problem is infeasible. 

 

 1.3.5  If the objective function Q(x) of a maximization (minimization) LFP problem has no upper 

(lower) finite bound, we say the LFP problem is unbounded.  

 

1.4 RELATIONSHIP WITH LINEAR PROGRAMMING 

 It is obvious that if ( )1 2, ,..., rx x x x=  and 0d   , then LFP problem (1.2.1) becomes an LP 

problem. This is a reason why we say that an LFP problem (1.2.1) is a generalization of the following LP 

problem 
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1 2m m m  .  
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 In this case, optimization of the original objective function Q(x) may  be substituted with optimization 

of linear function 
( )N x

d
 correspondingly on the same feasible set S. It is to be noted that if 

1

1, ( ) ( )
r
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=

= = = + .  

 There are also a few special cases when the original LFP problem may be replaced with an 

appropriate LP problem: 

  

 (1) If  0, 1, 2,,...jn j r= = , the objective function 
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    may be replaced with function D(x). In this case maximization (minimization) of the 

original objective function  Q(x) must be substituted with minimization (maximization) of a new objective 

function D(x) on the same feasible set S. 

 

 (2) If vectors 
1 2( , ,..., )rn n n n=  and 

1 2( , ,..., )rd d d d=  are linearly dependent, that is 

there exists such 0  , that n d= , then objective function 
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   may be replaced with function D(x). Obviously, in this case, maximization (minimization) 

of the original objective function Q(x) must be substituted with 

   * minimization (maximization) of D(x), if 0o on d−  ,  

   * maximization (minimization) of D(x), if 0o on d−  .  

Note: If 0o on d− = , ( )Q x = , which means that Q(x) = const. x S  .  

 

1.5 STANDARD FORM OF THE LFP PROBLEM 

 An LFP problem is said to be in standard form if all constraints are equations and all unknown 

variables are nonnegative, that is 
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1.6 GENERAL FORM OF THE LFP PROBLEM 

 An LFP problem is said to be in general form if all constraints are "<" (less than) inequalities and all 

unknown variables are nonnegative, that is   
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 We have seen that LFP problems may have both equality  and inequality constraints. They may also 

have unknown variables that are required to be nonnegative and variables that are allowed to be unrestricted 

in sign. 

 It is obvious that standard and general forms of LFP problems are special cases of a LFP problem 

formulated in  (1.2.1). Indeed, if in the common LFP problem (1.2.1) we put 
1 2 0m m= = , then we get a 

standard LFP problem. But if 
1m m= , then we have general  LFP problem. 
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 To convert one form to another, we use to following converting procedures 

 (1) ‘>’ (greater than) ' '→    (less than) 

   Both sides of the constraint must be multiplied by ‘–1’. 

 (2) '<' (less than)  →  '=' (equal)      

 Define for '' constraint a nonnegative slack variable 
is   ( 0is  −slak variable for i-th constraint) 

and put this variable into the left-side of the constraint, where it will play a role of difference between the 

left and right sides of the original i-th constraint. Also add the sign restrictions 0is   to the set of 

constraints. So 
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 (3) Unrestricted in sign variable  jx →  restricted in sign      

         nonnegative variable(s).  

 For each urs(unrestricted sign) variable jx , we begin by defining two new nonnegative variables 

' jx  and " jx . Then substitute ' "j jx x−  for xj in each constraint and in objective function. Also add the 

sign restrictions  0jx   and " 0jx   to the the set of constraints. 

 Because all three forms of an LFP problem [the most common form (1.2.1), standard from, and 

general form] may be easily converted to one another. Instead of an LFP problem in form (1.2.1), sometimes 

we will consider its equivalent LFP problem in standard or in general form. Obviously, such      substitution 

does not lead to any loss of generality, but allows us to simplify our consideration. 

 

1.7   MATRIX FORM OF THE LFP PROBLEM 

 On introducing the following notations, 

   1 2( , ,..., )T

j j j m jA a a a= , ( )1 2, ,...,
T

mb b b b= , 1 2( , ,..., )T

rx x x x= ,   

 1 2( , ,..., )T
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rd d d d= , 

where 1, 2, ... ,j r= , we can re-formulate the LFP problem in a matrix form as follows: 

Standard problem   
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 Subject to,   

1

r

j j

j

A x b
=

  
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Note: From the theory of Mathematical programming, we know that 

    min ( ) max( ( ))
x S x S

F x F x
 

 −  

which means that to convert a minimization LFP problem to a maximization one, we should multiply its 

objective function by ‘–1’. So, there is no reason to consider both cases (i.e. maximization and 

minimization) separately. 
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