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ABSTRACT  

We are improving the result of Badshah and Gagrani, (2007) by removing the assumption of continuity, 

relaxing compatibility to weak compatibility property and replacing the completeness of the space with a 

set of four alternative conditions for four functions satisfying an inequality. 
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INTRODUCTION 

During the last decade, a large body of literature has grown on common fixed points of compatible maps 

satisfying various contractive conditions. The most general results of this type deal with common fixed 

points of four mappings, say A, B, S, T of a Metric space (X. d), and use either a Meir-Keeler type ( ,  ) 

contractive condition  of the form 

(1) Given    > 0 there exists   > 0 such that 

    max { d (Sx, Ty),  d (Ax, Sx), d (By, Ty),  

[d (Sx, By) + d (Ax, Ty)]/2 } <   +  

  d (Ax,  By) <   

or a   - contractive condition of the from 

(2) d (Ax,  By)     (max { d (Sx, Ty), d (Ax, Sx), d (By, Ty),  

 [d (Ax, Ty) + d (By, Sx)] / 2} 

Where   : R
+
 → R

+
 is such that  (t) < t for each t > 0 or some generalized version of these conditions 

which is applicable to sequences of mapping. The contractive condition (2) does not ensure the existence 

of a fixed point unless some additional condition is assumed on the function . The following conditions 

on the function , which were introduced by various authors, are known to ensure a common fixed point 

under the contractive condition (2). 

(i)  (t) is non decreasing and  t/t-(t)  is non-increasing (Carbone et al., 1989). 

(ii)  (t) is non decreasing and limn 
n
 (t) = 0 for each t > 0 (Jachymski, 1994). 

(iii)  is upper, semi-continuous, and   (t) < t , for each t > 0 (Boyd and Wong, 1969) or 

equivalently. 

It is now known (Jachymski, 1995) that if any of the  conditions (i), (ii), (iii) or (iv) is assumed on , then 

a -contractive condition (2) implies an analogous. 

(  , )-contractive condition (1) and both the contractive conditions hold simultaneously. Similarly, a 

Meir-keelar type ( , )- contractive condition does not ensure the existence of a fixed point.  

The following example illustrates that an (  , ) contractive condition of type (1) neither ensures the 

existence of a fixed point nor implies an analogous  contractive condition (2) 

Example: (Pant et al., 2001) Let X =  [0, 2] and d be the Euclidean mteric on X. Define 

f: X →  X by f (x) = 






 

4

1 x
  

If x > 1; f (x) = 0 if x   1. 

Then, it satisfies the contractive condition 

   max {d (x, y), d (x,  fx), d (y, fy),   

[d (x, fy) + d (y, fx)]/2} <    +      

  d (fx,  fy) <   
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with  ( ) = 1, for    1 and  (  ) = 1- ,  for   < 1 but f does not have a fixed point. Also f does not 

satisfy the contractive condition. 

d (fx, fy)   max {d  (x,  y), d (x, fx), d (y, fy), d (x, fy) + d (y, fx)] /2} 

Since the desire function  (t) cannot be defined at t = 1. 

Hence, the two type of condition (1) and (2) are independent of each other. Thus, to ensure the existence 

of common fixed point under the contractive condition (1), the following conditions on the function  

have been introduced and used by various authors. 

(v)   is non decreasing (Pant et al., 2001)    

(vi)  is lower semi-continuous (Jungck, 1986) 

Jachymski (1994) has shown that the (  , ) contractive condition (1) with a non-decreasing  implies a 

-contractive condition (2). Also, Pant et al., (2001) have shown that ( , )-contractive condition (2) 

with a lower semi continuous , implies a -contractive condition (2). Thus, we see that if additional 

conditions are assumed on  then the ( , )-contractive condition (1) implies an analogous -contractive 

condition (2) and both the contractive conditions hold simultaneously. 

It is thus, clear that contractive condition (1) & (2) hold simultaneously whenever (1) or (2) is assumed 

with an additional condition on  or  respectively. It follows, therefore, that the known common fixed 

point theorems can be extended and generalized if instead of assuming one of the contractive condition 

(1) or (2) with additional condition on  and , we assume contractive condition (1) together with the 

following condition of form. 

d (Ax, By) < k [d (Sx, Ty) + d (Ax, Sx) + d (By, Ty) + d (Sx, By) + d (Ax, Ty)];  

for 0   k   1/3 

 

RESULTS AND DICUSSION 

Main Result 

Recently, Badshah and Gagrani (2007) have proved following common fixed point theorem for four 

mappings. 

Theorem 1: Let (A, S) and (B, T) be compatible pairs of self mappings of a complete Metric space (X, d) 

such that 

(a) A(X)   T(X), B(X)   S(X) 

(b) Given   > 0 there exist a  > 0 such that for all x, y in X, 

    max k {d (Sx, Ty), d (Ax, Sx), d (By, Ty),  

[d (Sx, By) + d (Ax, Ty) ]/2 } <   +  

 d (Ax, By) <   and 

(c) d (Ax, By)    max {d (Sx, Ty), { d (Ax, Sx) + d (By, Ty)] /2, 

k [d (Sx, By) +  d (Ax, Ty) ]}; for l  k < 2. 

If one of the mappings A, B, S and T is continuous then A, B, S and T have unique common fixed point. 

Now, we are improving Theorem 1 by removing the assumption of continuity, relaxing compatibility to 

weak compatibility property and replacing the completeness of the space with a set of four alternative 

conditions for four functions satisfying an inequality- 

To prove our theorem, we shall use the following lemma of Jachymski (1994). 

Lemma 2 – Let A, B, S and T be self maps of a metric space (X, d) such that  

A (X)   T (X) and B (X)   S (X). Assume that further that given   > 0, there exist a  

 > 0 such that, for all x, y in X 

  < M(x, y) <  +  implies that d (Ax, By) ≤     (3) 

For all x, y in X with M (x, y) > 0, d (Ax, By) < M (x, y)   (4) 

Where, M(x,y) = max {d (Sx, Ty), d (Ax, Sx), d (By, Ty), d (Ax, Ty) + d (By, Sx) /2} 

Then, for each x0 in X any sequence {yn}, being an S, T-iteration of x0 under A and B is a cauchy 

sequence.  
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Let {Ai, i = 1, 2, 3…}, S and T be self mapping of a Metric space  

(X, d). In the sequel we shall denote 

M1i = (x, y) = max {d (Sx, Ty) d (A1x, Sx), d (Aiy, Ty) +  

[d  (A1x,  Ty) + d (Aiy, Sx)]/2} 

Theorem 2: Let {Ai = 1, 2, 3,…}, S and T be self mappings of a metric space (X, d) such that  

(a)   A1(X)  T (X), Ai (X)   S (X), i > 1 

(b)   Given   > 0 there exists  > 0 such that 

    M12 (x, y) <    +     

  d (A1x, A2y) <   

(c)  d (A1x,  Aiy)   i  max {d (Sx, Ty)  d (A1x,  Sx) + d (Aiy, Ty) ] /2  + 

[d (Sx, Aiy) + d (A1x, Ty)]}, 

Where, i :  R
+
  R

+
 is such that  i (t) < t for each t > 0. 

If one of A1(X), B(X), S(X) is a complete subspace of X, then  

(i)  A1 and S have a coincidence point, 

(ii) Ai, i > 1 and T have a coincidence point. 

Moreover, if the pair (A1, S) and (Ai, T), i > 1 and weakly compatible then all the Ai, S and T have a 

unique common fixed point. 

Proof: Let x0 be any point in X. Define sequence {xn} and {yn} in X given by the rule 

y2n = Aix2n = Tx2n + 1 

y2n+1 = A2x2n+1 = Sx2n + 2 

This can be done by virtue of (a). We claim that {yn} is a cauchy sequence. Two cases arise. Either yn = 

yn+1 for some n or yn  yn+1 for each n.  

If yn = yn+1 for some n then, as shown by Carbone et al. (1989). yn = yn+k for each k  1. For instance 

suppose that y2m = y2m+1. Then,  

y2m+1 = y2m+2. Otherwise, using (b) we get 

d (y2m+1,  y2m+2) < M12 (x2m+2, x2m+1) = d (y2m+1,  y2m+2)  

which is a contradiction 

Hence, y2m+1 = y2m+2 implies that y2m+2 = y2m+3  

Proceeding in this manner it follows that y2m = y2m+k for each k  1 and {yn} is a cauchy sequence. Let us, 

therefore, consider the case when yn  yn+1 for each n. In this case, using (b) we obtain. 

d (y2m,  y2n+1) < d (y2n-1, y2n) 

d (y2n-1,  y2n)  < d (y2n-2, y2n-1) 

Thus, {d (yn, yn+1)} is a strictly decreasing sequence of positive numbers and, therefore, tends to a limit r 

 0. If possible, suppose r > 0. Then, given  > 0 there exists a positive integer N such that for each n  N, 

we have 

r < d (y2n, y2n+1) = M12 (x2n+2, x2n+1) < r +                          (5) 

Selecting  in (5) in accordance with (b), for each n  N, we get  

d (y2n+2, y2n+1) = d (A1x2n+2, A2x2n+1) < r this, in turn, gives  

d (y2n+3, y2n+2) <  d (y2n+1, y2n+2) < r, contradicting (5) hence, 

n
lim  d (yn, yn+1) = 0 

We now show that {yn} is a cauchy sequence. suppose it is not. Then, there exists an>0 and a 

subsequence {
iny } of {yn} such that d (

iny ,
iny +1) > 2 . Select   in (b) so that  

0 <    . 

Since
n

lim d (yn, yn+1) = 0, there exists an integer N such that 

d (yn, yn+1) < /6 ; whenever n  N. 

Let ni  N, then there exist integers mi satisfying ni < mi < ni+1  
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Such that d (
iny ,

imy )    + (/3). If not, then 

d (
iny ,

1iny


) ≤ d  (
iny ,

1iny


-1) + d (
1iny


-1,
1iny


) 

  <    + (/3) + (/6) < 2 .  , 

a contradiction. Without loss of generality, we can assume ni, to be odd. Let be the smallest even integer 

such that d (
iny ,

imy )     + (/3).  Then, 

 d (
iny ,

imy - 2)  <   + (/3) and 

  + (/3)  d (
iny ,

imy ) ≤ + d (
iny ,

imy -2) + d (
imy - 2,

imy -1) + (
imy -1, my )  

<   + (/3)   + (/6)   + (/6)   =   + (2/3)          (2) 

Also d (
iny ,

imy )  M12 (
1inX


,
1imX


) <   + (2/3) + (/6) <+  

that is,   + (/3)  M12 (
1inX


,
1imX


) < + . 

In view of (b), this yields d (
iny ,

1imy


) <  . But then 

d ((
iny ,)    d (

iny ,
1imy


)  + d ((
iny ,

1imy


)  + d (
1imy


,
imy )  

< (/6) +   + (/6) =    + (/3) 

Which is a contradiction (4) 

Hence, {yn} is a cauchy sequence. In X Now, suppose that T (X) is a complete subspace of X. Then, the 

subsequence y2n = Tx2n+1 is a cauchy sequence in T (X) and hence, has a limit u.  

Now, we show that Aix2n+1   u for each i > 1.  

If 
n

lim Aix2n+1  u for some i > 1. Then, either
n

lim Aix2n+1  = w  u or  

n
lim Aix2n+1  does not exist. 

In the later case either sequence { Aix2n+1 } is unbounded or has at least two limit points. However, in each 

of these cases there exists a subsequence {Aix2m+1 }and a number r > 0 such that d (Aix2m, Aix 2m+1)  r, d 

(Aix 2m+1, u)  r/6 

while by virtue of (4), 

d (A1x 2m, Sx 2m) < r/6, d (A1x 2m+1, Tx 2m+1 ) < r/6,d (Sx 2m, Tx 2m+1) > r/6, for all m sufficiently large. Using 

(b) and (c), for all large m, we get, 

d (A1x 2m, Aix 2m+1) < max {d (Sx2m, Tx2m+1),  d (Aix 2m, Sx 2m) d (Aix 2m+1, Tx 2m+1) 

                                       [ d (Sx 2m, Aix 2m+1) + d (Aix 2m, Tx 2m+1) ] }  

d (A1x 2m, Aix 2m+1) < max {r/6,  r/6,  d (Aix 2m+1, Tx2m+1) [ 0 + d (Aix 2m+1, Sx 2m)]/2  } 

                             max {d (Aix 2m+1, Tx2m+1) [ d  (Aix 2m+1, Ax 2m) + d (Aix 2m, Sx 2m)]/2  } 

                             max {d (Aix 2m+1, A1x2m) [ d  (Aix 2m+1, Ax 2m) + r/6 ]/2 } 

                            = d (A1x 2m, A1x2m+1) 

Which is a contradiction. Hence, 

lim Aix 2n+1  = u, i > 1, n  ∞ 

Let v = T
-1

 u, then Tv = u. Since y2n is convergent, then y2n is convergent to u and y2n+1 also converge to u. 

For any k > 1, 

Setting x = x2n and y = v in (c) we have 

d (Aix 2n, Akv)   k max { d (Sx2n,  Tv), [d (A1x2n, Sx2n ) +  

   d (Akv, Tv]/2 , [d (Sx2n, Akv) +  d (A1x2n, Tv ) ]} 

Letting n tend to infinity, we obtain 

d (u, Akv )    k max { d (u,  u), [d (u, u ) +  d (Akv, u]/2 , [d (u, Akv) + d (u, u) ]} 

d (u, Akv )   k max d (u, Akv) 
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which is a contradiction. Hence, u = Akv. 

There T and Ak have a coincidence point. 

Since Ak (X)   S (X), u = Akv implies that u   S (X)  

Let w   S
-1

 u, then Sw = u. Setting X = w and y = x2n+1, we obtain by (C) 

d (A1w, Akx2n+1)    k max {d (Sw, Tx2n+1), [d (A1w, Sw) +  

d (Akx2n+1, Tx2n+1]/2, [d (Sw, Akx2n+1) + d (A1wi, Tx2n+1 )]} 

Letting n  ∞ 

d (A1w, u)   k max { d (u,  u), [d (A1w, u) +  

d (u, u]/2, d (u, u) + d (u, u) + ( Aiw, u)]} 

d (A1w, u)   k d (A1wi, u) 

We have Aiw = u. Hence, Ai and s have a coincidence point. If one assumes that S (X) is complete, then 

analogous arguments establish the existence of a coincidence point. 

The remaining two cases are essentially the same as the previous cases. Indeed if Ai (X) is complete by 

(a) 

u   Ai (X)   T (X) 

Then, (d) and (e) are completely established 

By u = Tv = Bv and by the weak compatibility of (Ai T), i > 1 we have 

Ai u = Ai Tv = TAiv = Tu 

By u = Sw = Aw and by the weak compatibility of (A, S) we have  

A1u = A1Sw = SA1w = Su 

By (c) we have successively. 

d (A1w, Aku)   k max {d (Sw, Tu), [d (A1 w, Sw) +  

d (Aku, Tu]/2 , [d (Sw, Aku) + d (Aiwi, Tu )]} 

d (u, Aku)   k max {d (u,  A1u), [d (u, u ) + d (Aiu, Aiu)]/2 d (u, Aiu) + d  (u, Aiu)]} 

                =  k max {d (u, Aiu), 0, 2d (u, Aiu)} 

d (u, Aku)   k 2 d (u, Aiu) 

which implies that 

u = Aku 

Similarly, one can show that u = A1u. Thus, 

u = Aiu = Tu = Aiu = Su 

The common fixed point of Ai {i = 1, 2, 3..............} S, T is u. 

Uniqueness 

Suppose that A, B, S, T have two common fixed point u and u'. Then, by (c) we have successively 

d (A1u, Aku′)   k max {d (Su,  Tu′), [d (A1u, Su) + d (Ak u′, T u′) ]/2 d (Su, Ak u′) +  

d (Aiu, T u′) ] } 

d (u, u′)   k max {d (u,  u′), [d (u, u) +  d (u′, u′) ]/2 d (u, u′) + d  (u, u′)]} 

d (u, u′)   k 2 d (u, u′) 

which implies that 

u = u′  

which is a contradiction 

Hence, Ai {i = 1, 2, 3..............} S and T have a unique common fixed point u. 

We now give an example to illustrate the above theorem  

Example: Let X = [2, 20] and d be the usual metric on X. Define Ai S,T   X X1 i = 1, 2, ………….  as 

follows  

A1x = 2, for each x 

Sx = x is x  8, Sx = 8 if 8 < x  14 Sx = (x + 10) / 3 if x > 14. 

Tx = 2 if x = 2 or x  5, Tx = 12 + x if 2 < x < 4 

Tx = 9 + x if  4  x < 5 

A2x = 2 if x < 4 or x ≥ 5, A2x = 3 + x if 4  x < 5  
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and for each i > 2 

Aix = 2 if x = 2 or x  4, Aix = (30 + x)/4 if 2 < x < 4 

Then {Ai}, S and T satisfy all the conditions of the above theorem and have a unique common fixed point 

x = 2. 
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