Research Article

NEW PROPERTIES OF THE NATARAJAN METHOD OF SUMMABILITY FOR DOUBLE SEQUENCES

*P N Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India *Author for Correspondence

ABSTRACT

In this paper, we study some properties of the $(M, \lambda_{m,n})$ method of summability introduced earlier by the author in (Natarajan (to appear)).

Keywords: Double Sequence, Double Series, $(M, \lambda_{m,n})$ Method (or the Natarajan Method) of Summability, Cauchy Product, Inclusion, Equivalence, Iteration Product

INTRODUCTION AND PRELIMINARIES

To make the paper self-contained, we recall the following (Natarajan, 2014):

Definition 1.1:

Let $\{x_{m,n}\}$ be a double sequence. We say that

 $\lim_{m+n\to\infty} x_{m,n} = x,$

if for every $\varepsilon > 0$, the set

 $\{(m, n) \in \mathbb{N}^2 : |x_{m,n} - x| \ge \varepsilon\}$

is finite, \mathbb{N} being the set of positive integers. In such a case, x is unique and x is called the limit of the double sequence $\{x_{m,n}\}$. We also say that $\{x_{m,n}\}$ converges to x.

Definition 1.2:

Let $\{x_{m,n}\}$ be a double sequence. We say that

$$\sum_{\substack{m,n=0\\\text{if}}}^{\infty,\infty} x_{m,n} = s,$$

 $\lim s_{m,n} = s,$

where,

$$s_{_{m,n}} = \sum_{_{k,\ell=0}}^{_{m,n}} x_{_{k,\ell}}, \quad m,n=0,1,2,....$$

In such a case, we say that the double series $\sum_{n=0}^{\infty,\infty} x_{m,n}$ converges to s.

Remark 1.3:

If $\lim_{m,n} x_{m,n} = x$, then the double sequence $\{x_{m,n}\}$ is bounded.

It is easy to prove the following results.

Theorem 1.4:

 $\lim x_{m,n} = x,$

if and only if

(i) $\lim x_{m,n} = x$, n = 0, 1, 2, ...;

(ii) $\lim x_{m,n} = x$, m = 0, 1, 2, ...;

and (iii) for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

Centre for Info Bio Technology (CIBTech)

$|\mathbf{x}_{m,n} - \mathbf{x}| < \varepsilon, \quad m, n \ge N,$

which we write as

 $\lim_{m,n\to\infty} \mathbf{x}_{m,n} = \mathbf{x}$

(Note that this is Pringsheim's definition of limit of a double sequence). *Theorem 1.5:*

If the double series $\sum_{m,n=0}^{\infty,\infty} x_{m,n}$ converges, then,

 $\lim_{m+n\to\infty} x_{m,n} = 0.$

However, the converse is not true.

Definition 1.6:

 $\sum_{m,n=0}^{\infty} x_{m,n} \text{ is said to converge absolutely, if } \sum_{m,n=0}^{\infty} |x_{m,n}| \text{ converges.}$

Note that if $\sum_{m,n=0}^{\infty} x_{m,n}$ converges absolutely, it converges. However, the converse is not true.

Some Properties of the $(M, \lambda_{m,n})$ Method or the Natarajan Method Definition 2.1:

Given a 4-dimensional infinite matrix $A = (a_{m,n,k,\ell})$, m, n, k, $\ell = 0, 1, 2, ...$ and a double sequence $\{x_{k,\ell}\}$, k, $\ell = 0, 1, 2, ...$, by the A-transform of $x = \{x_{k,\ell}\}$, we mean the sequence $A(x) = \{(Ax)_{m,n}\}$, where,

$$(Ax)_{m,n} = \sum_{k,\ell=0}^{\infty} a_{m,n,k,\ell} x_{k,\ell}, \quad m,n = 0,1,2,...,$$

assuming that the double series on the right converge. If $\lim_{m \to \infty} (Ax)_{m,n} = s$, we say that the double sequence

$$\label{eq:constraint} \begin{split} x &= \{x_{k,\ell}\} \text{ is A-summable or summable A to s, written as,} \\ x_{k,\ell} &\to s(A). \end{split}$$

If $\lim_{m+n\to\infty} (Ax)_{m,n} = s$, whenever $\lim_{k+\ell\to\infty} x_{k,\ell} = s$, we say that the 4-dimensional infinite matrix A is "regular".

The following important theorem on the regularity of a 4-dimensional infinite matrix was proved by Natarajan (2014).

Theorem 2.2 (Silverman-Toeplitz):

The 4-dimensional infinite matrix $A = (a_{m,n,k,\ell})$ is regular if and only if

(2.1)
$$\sup_{m,n\geq 0}\sum_{k,\ell=0}^{\infty} \left|a_{m,n,k,\ell}\right| < \infty;$$

(2.2)
$$\lim_{m+n\to\infty} a_{m,n,k,\ell} = 0, \quad k, \ell = 0, 1, 2, ...;$$

(2.3)
$$\lim_{m+n\to\infty}\sum_{k,\ell=0}^{\infty,\infty} a_{m,n,k,\ell} = 1;$$

(2.4)
$$\lim_{m+n\to\infty}\sum_{k=0}^{\infty} |a_{m,n,k,\ell}| = 0, \quad \ell = 0, 1, 2, \dots;$$

and

(2.5)
$$\lim_{m+n\to\infty}\sum_{\ell=0}^{\infty} |a_{m,n,k,\ell}| = 0, \quad k = 0,1,2,....$$

(Natarajan (to appear)) introduced the $(M, \lambda_{m,n})$ method for double sequences and extended some of the results of the (M, λ_n) method for simple sequences.

Definition 2.3:

Let $\{\lambda_{m,n}\}\$ be a double sequence such that $\sum_{m,n=0}^{\infty} |\lambda_{m,n}| < \infty$. The (M, $\lambda_{m,n}$) method is defined by the

4-dimensional infinite matrix $(a_{m,n,k,\ell})$, where,

$$a_{m,n,k,\ell} = \begin{cases} \lambda_{m-k,n-\ell}, & 0 \le k \le m, 0 \le \ell \le n; \\ 0, & \text{otherwise.} \end{cases}$$

Definition 2.4:

We say that $(M, \lambda_{m,n})$ is included in $(M, \mu_{m,n})$ (or $((M, \mu_{m,n})$ includes $(M, \lambda_{m,n})$), written as,

 $(M, \lambda_{m,n}) \subseteq (M, \mu_{m,n})$ (or $(M, \mu_{m,n}) \supseteq (M, \lambda_{m,n})$),

If $s_{k,\ell} \to \sigma(M, \lambda_{m,n})$ implies that $s_{k,\ell} \to \sigma(M, \mu_{m,n})$ too.

The methods (M, $\lambda_{m,n}$), (M, $\mu_{m,n}$) are said to be equivalent if (M, $\lambda_{m,n}$) \subseteq (M, $\mu_{m,n}$) and vice versa.

It is easy to prove the following result.

Theorem 2.5: (see Natarajan (to appear))

The method (M, $\lambda_{m,n}$) is regular if and only if

(2.6)
$$\sum_{m,n=0}^{\infty} \lambda_{m,n} = 1.$$

Analogous to Theorem 176 of Hardy (1949), we have the following result in the context of double sequences and double series.

Theorem 2.6:

If
$$\lim_{m+n\to\infty} a_{m,n} = 0$$
 and $\sum_{m,n=0}^{\infty} |b_{m,n}| < \infty$, then
 $\lim_{m+n\to\infty} c_{m,n} = 0$,
where,

$$c_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} b_{k,\ell}, \quad m,n = 0,1,2,....$$

Proof.

Since $\{a_{m,n}\}$, $\{b_{m,n}\}$ are convergent, they are bounded and so,

(2.7) $|a_{m,n}| \le M$, $|b_{m,n}| \le M$, M > 0, m, n = 0, 1, 2, ...

Since $\sum_{m,n} | < \infty$, given $\varepsilon > 0$, there exist positive integers M_1 , N_1 such that

(2.8)
$$\sum_{m>M_1,n>N_1}^{\infty,\infty} \left| b_{m,n} \right| < \frac{\varepsilon}{4M}.$$

Since, for fixed k, $\ell = 0, 1, 2, ...,$ $\lim a_{m-k,n-\ell} = 0,$

we can choose positive integers $M_2 > M_1$, $N_2 > N_1$ such that for $m > M_2$, $n > N_2$, we have,

(2.9)
$$\sum_{\substack{0 \le k \le M_1 \\ 0 \le \ell \le N_1}} \left| a_{m-k,n-\ell} \right| < \frac{\varepsilon}{4M};$$

(2.10)
$$\sum_{\substack{0 \le k \le M_1 \\ N_1 + 1 \le \ell \le n}} \left| a_{m-k,n-\ell} \right| < \frac{\varepsilon}{4M};$$

and

Centre for Info Bio Technology (CIBTech)

(2.11)
$$\sum_{\substack{M_1+l\leq k\leq m\\0\leq \ell\leq N_1}} \left| a_{m-k,n-\ell} \right| < \frac{\varepsilon}{4M} \, .$$

Then, for $m > M_2$, $n > N_2$, $| m, n > N_2$,

$$\begin{split} & \mathbf{c}_{n} \Big| = \left| \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} \mathbf{b}_{k,\ell} \right| \\ & = \left| \sum_{\substack{0 \le k \le M_{1} \\ 0 \le \ell \le N_{1}}} a_{m-k,n-\ell} \mathbf{b}_{k,\ell} + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} a_{m-k,n-\ell} \mathbf{b}_{k,\ell} + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} a_{m-k,n-\ell} \mathbf{b}_{k,\ell} + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} a_{m-k,n-\ell} \mathbf{b}_{k,\ell} \Big| \\ & \le \sum_{\substack{0 \le k \le M_{1} \\ 0 \le \ell \le N_{1}}} \left| a_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} \left| a_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} \left| a_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| + \sum_{\substack{0 \le k \le M_{1} \\ \ell > N_{1}}} \left| a_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| + \sum_{\substack{k > M_{1} \\ 0 \le \ell \le N_{1}}} \left| a_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| \\ & < M \frac{\epsilon}{4M} + M \frac{\epsilon}{4M} + M \frac{\epsilon}{4M} + M \frac{\epsilon}{4M} \\ & = \epsilon, \quad \text{using} \quad (2.7), (2.8), (2.9), (2.10) \text{ and } (2.11). \end{split}$$

It now follows that

 $\lim_{m+n\to\infty}c_{m,n}=0,$

completing the proof of the theorem.

We now have the following results on the cauchy multiplication of $(M, \lambda_{m,n})$ -summable double sequences and double series.

Theorem 2.7:

If
$$\sum_{m,n=0}^{\infty,\infty} |a_{m,n}| < \infty$$
 and $\{b_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to B, then $\{c_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to AB, where,
 $c_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} b_{k,\ell}, \quad m, n = 0,1,2,...$

and

$$\sum_{m,n=0}^{\infty,\infty} a_{m,n} = A.$$

Proof.

Let, $\{t_{m,n}\},~\{\tau_{m,n}\}$ be the (M, $\lambda_{m,n})\text{-transforms}$ of $\{b_{m,n}\},~\{c_{m,n}\}$ respectively,

i.e.,
$$t_{m,n} = \sum_{k,\ell=0}^{m,n} \lambda_{m-k,n-\ell} b_{k,\ell}$$
,
 $\tau_{m,n} = \sum_{k,\ell=0}^{m,n} \lambda_{m-k,n-\ell} c_{k,\ell}$, $m, n = 0, 1, 2,$

We can work to see that

$$\tau_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} (t_{k,\ell} - B) + B \left(\sum_{k,\ell=0}^{m,n} a_{k,\ell} \right), \quad m,n = 0,1,2,...$$

where, $\lim_{k+\ell\to\infty} t_{k,\ell} = B$. Since $\sum_{m,n=0}^{\infty,\infty} |a_{m,n}| < \infty$ and $\lim_{k+\ell\to\infty} (t_{k,\ell} - B) = 0$, using Theorem 2.6, it follows that

$$\lim_{m+n\to\infty}\left[\sum_{k,\ell=0}^{m,n}a_{m-k,n-\ell}(t_{k,\ell}-B)\right]=0,$$

so that

Centre for Info Bio Technology (CIBTech)

Research Article

$$\lim_{m+n\to\infty} \tau_{m,n} = B\left(\sum_{m,n=0}^{\infty} a_{m,n}\right)$$
$$= AB,$$

i.e., $\{c_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to AB, completing the proof of the theorem. It is easy to prove the following result on similar lines.

Theorem 2.8:

If
$$\sum_{m,n=0}^{\infty,\infty} |a_{m,n}| < \infty$$
, $\sum_{m,n=0}^{\infty,\infty} b_{m,n}$ is $(M, \lambda_{m,n})$ -summable to B, then $\sum_{m,n=0}^{\infty,\infty} c_{m,n}$ is $(M, \lambda_{m,n})$ -summable to AB, where,
 $c_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} b_{k,\ell}$, $m, n = 0, 1, 2, ...$

and

$$\sum_{m,n=0}^{\infty,\infty} a_{m,n} = \mathbf{A}.$$

As in the case of the Natarajan method (M, λ_n) for simple sequences (Natarajan, 2013), we can prove the following result, using Theorem 2.6.

Theorem 2.9:

Let $(M, \lambda_{m,n})$, $(M, \mu_{m,n})$ be regular methods. Then, $(M, \lambda_{m,n})$ $(M, \mu_{m,n})$ is also regular, where, we define, for $x = \{x_{m,n}\},\$

 $((M,\,\lambda_{m,n})\;(M,\,\mu_{m,n}))(x)=(M,\,\lambda_{m,n})\;((M,\,\mu_{m,n})(x)).$

We can prove the following results too.

Theorem 2.10:

For given regular methods (M, $\lambda_{m,n}$), (M, $\mu_{m,n}$) and (M, $t_{m,n}$), (M, $\lambda_{m,n}$) \subseteq (M, $\mu_{m,n}$)

if and only if

 $(M,\,t_{m,n})\;(M,\,\lambda_{m,n}) \subseteq (M,\,t_{m,n})\;(M,\,\mu_{m,n}).$

In view of Theorem 3.6 of (Natarajan (to appear)), we can reformulate Theorem 2.10 as follows:

Theorem 2.11:

Given the regular methods (M, $\lambda_{m,n}$), (M, $\mu_{m,n}$) and (M, $t_{m,n}$), the following statements are equivalent: (i) (M, $\lambda_{m,n}$) \subseteq (M, $\mu_{m,n}$);

 $(ii) (M, t_{m,n}) (M, \lambda_{m,n}) \subseteq (M, t_{m,n}) (M, \mu_{m,n});$ and

(iii)
$$\sum_{m,n=0}^{\infty,\infty} |k_{m,n}| < \infty$$
 and $\sum_{m,n=0}^{\infty,\infty} k_{m,n} = 1$,

where,

$$\begin{split} &\frac{\mu(x)}{\lambda(x)} = k(x) = \sum_{m,n=0}^{\infty,\infty} k_{m,n} x^m y^n;\\ &\lambda(x) = \sum_{m,n=0}^{\infty,\infty} \lambda_{m,n} x^m y^n; \end{split}$$

and

$$\mu(x)=\sum_{m,n=0}^{\infty,\infty}\!\!\mu_{m,n}x^my^n.$$

REFERENCES Hardy GH (1949). *Divergent Series.* (Clarendon Press, Oxford, UK).

Centre for Info Bio Technology (CIBTech)

Natarajan PN (2013). Iteration product of Natarajan methods of summability. *International Journal of Physics and Mathematical Sciences* **3** 25-29.

Natarajan PN (2014). A new definition of convergence of a double sequence and a double series and Silverman-Toeplitz theorem. *Commentationes Mathematicae (Prace Matematyczne)* **54** 129-139.

Natarajan PN (No Date). Natarajan method of summability for double sequences and series. *An. Stiint. Univ. Al. I. Cuza Iasi Math.* (to appear).