Research Article

NEW PROPERTIES OF THE NATARAJAN METHOD OF SUMMABILITY FOR DOUBLE SEQUENCES

*P N Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India
*Author for Correspondence

Abstract

In this paper, we study some properties of the $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$ method of summability introduced earlier by the author in (Natarajan (to appear)).

Keywords: Double Sequence, Double Series, (M, $\lambda_{m, n}$) Method (or the Natarajan Method) of Summability, Cauchy Product, Inclusion, Equivalence, Iteration Product

INTRODUCTION AND PRELIMINARIES

To make the paper self-contained, we recall the following (Natarajan, 2014):
Definition 1.1:
Let $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ be a double sequence. We say that
$\lim _{m+n \rightarrow \infty} x_{m, n}=x$,
if for every $\varepsilon>0$, the set
$\left\{(\mathrm{m}, \mathrm{n}) \in \mathrm{N}^{2}:\left|\mathrm{x}_{\mathrm{m}, \mathrm{n}}-\mathrm{x}\right| \geq \varepsilon\right\}$
is finite, N being the set of positive integers. In such a case, x is unique and x is called the limit of the double sequence $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$. We also say that $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ converges to x .
Definition 1.2:
Let $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ be a double sequence. We say that
$\sum_{m, n=0}^{\infty, \infty} x_{m, n}=s$,
if
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{s}_{\mathrm{m}, \mathrm{n}}=\mathrm{s}$,
where,
$\mathrm{s}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{x}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$.
In such a case, we say that the double series $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ converges to s .

Remark 1.3:

If $\lim _{m+n \rightarrow \infty} X_{m, n}=x$, then the double sequence $\left\{x_{m, n}\right\}$ is bounded.
It is easy to prove the following results.
Theorem 1.4:
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}$,
if and only if
(i) $\lim _{\mathrm{m} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}, \mathrm{n}=0,1,2, \ldots$;
(ii) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}, \quad \mathrm{m}=0,1,2, \ldots$;
and
(iii) for any $\varepsilon>0$, there exists $\mathrm{N} \in \mathrm{N}$ such that

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2016 Vol. 6 (3) July-September, pp. 28-33/ Natarajan

Research Article

$\left|\mathrm{x}_{\mathrm{m}, \mathrm{n}}-\mathrm{x}\right|<\varepsilon, \quad \mathrm{m}, \mathrm{n} \geq \mathrm{N}$,
which we write as
$\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}$
(Note that this is Pringsheim's definition of limit of a double sequence).
Theorem 1.5:
If the double series $\sum_{m, n=0}^{\infty, \infty} x_{m, n}$ converges, then,
$\lim _{m+n \rightarrow \infty} x_{m, n}=0$.
However, the converse is not true.
Definition 1.6:
$\sum_{m, n=0}^{\infty, \infty} x_{m, n}$ is said to converge absolutely, if $\sum_{m, n=0}^{\infty, \infty}\left|x_{m, n}\right|$ converges.
Note that if $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ converges absolutely, it converges. However, the converse is not true.

Some Properties of the (M, $\lambda_{m, n}$) Method or the Natarajan Method

Definition 2.1:
Given a 4-dimensional infinite matrix $A=\left(\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right), \mathrm{m}, \mathrm{n}, \mathrm{k}, \ell=0,1,2, \ldots$ and a double sequence $\left\{\mathrm{x}_{\mathrm{k}, \ell}\right\}$, $k, \ell=0,1,2, \ldots$, by the A-transform of $x=\left\{x_{k, \ell}\right\}$, we mean the sequence $A(x)=\left\{(A x)_{m, n}\right\}$, where,
$(A x)_{m, n}=\sum_{\mathrm{k}, \ell=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell} \mathrm{x}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$,
assuming that the double series on the right converge. If $\lim _{m+n \rightarrow \infty}(A x)_{m, n}=s$, we say that the double sequence $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{k}, \ell}\right\}$ is A-summable or summable A to s , written as,
$\mathrm{x}_{\mathrm{k}, \ell} \rightarrow \mathrm{s}(\mathrm{A})$.
If $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}(\mathrm{Ax})_{\mathrm{m}, \mathrm{n}}=\mathrm{s}$, whenever $\lim _{\mathrm{k}+\ell \rightarrow \infty} \mathrm{x}_{\mathrm{k}, \ell}=\mathrm{s}$, we say that the 4 -dimensional infinite matrix A is "regular".
The following important theorem on the regularity of a 4-dimensional infinite matrix was proved by Natarajan (2014).
Theorem 2.2 (Silverman-Toeplitz):
The 4-dimensional infinite matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right)$ is regular if and only if

$$
\begin{equation*}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{\mathrm{k}, \ell=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}=1 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{\mathrm{m}, \mathrm{n} \geq 0} \sum_{\mathrm{k}, \ell=0}^{\infty, \infty}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right|<\infty ; \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}=0, \quad \mathrm{k}, \ell=0,1,2, \ldots \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{\mathrm{k}=0}^{\infty}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right|=0, \quad \ell=0,1,2, \ldots \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{\ell=0}^{\infty}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right|=0, \quad \mathrm{k}=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

(Natarajan (to appear)) introduced the ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$) method for double sequences and extended some of the results of the $\left(M, \lambda_{n}\right)$ method for simple sequences.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 28-33/ Natarajan

Research Article

Definition 2.3:

Let $\left\{\lambda_{m, n}\right\}$ be a double sequence such that $\sum_{m, n=0}^{\infty, \infty}\left|\lambda_{m, n}\right|<\infty$. The (M, $\lambda_{m, n}$) method is defined by the 4-dimensional infinite matrix ($\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}$), where,
$\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}= \begin{cases}\lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}, & 0 \leq \mathrm{k} \leq \mathrm{m}, 0 \leq \ell \leq \mathrm{n} ; \\ 0, & \text { otherwise } .\end{cases}$

Definition 2.4:

We say that $\left(M, \lambda_{m, n}\right)$ is included in $\left(M, \mu_{m, n}\right)$ (or $\left(\left(M, \mu_{m, n}\right)\right.$ includes $\left.\left(M, \lambda_{m, n}\right)\right)$, written as,
$\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right) \quad\left(\right.$ or $\left.\quad\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right) \supseteq\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\right)$,
If $\mathrm{s}_{\mathrm{k}, \ell} \rightarrow \sigma\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$ implies that $\mathrm{s}_{\mathrm{k}, \ell} \rightarrow \sigma\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$ too.
The methods ($M, \lambda_{m, n}$), (M, $\mu_{m, n}$) are said to be equivalent if $\left(M, \lambda_{m, n}\right) \subseteq\left(M, \mu_{m, n}\right)$ and vice versa.
It is easy to prove the following result.
Theorem 2.5: (see Natarajan (to appear))
The method ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$) is regular if and only if

$$
\begin{equation*}
\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \lambda_{\mathrm{m}, \mathrm{n}}=1 . \tag{2.6}
\end{equation*}
$$

Analogous to Theorem 176 of Hardy (1949), we have the following result in the context of double sequences and double series.

Theorem 2.6:

If $\lim _{m+n \rightarrow \infty} a_{m, n}=0$ and $\sum_{m, n=0}^{\infty, \infty}\left|b_{m, n}\right|<\infty$, then
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{c}_{\mathrm{m}, \mathrm{n}}=0$,
where,
$\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$.

Proof.

Since $\left\{a_{m, n}\right\},\left\{b_{m, n}\right\}$ are convergent, they are bounded and so,
(2.7) $\quad\left|a_{m, n}\right| \leq M, \quad\left|b_{m, n}\right| \leq M, \quad M>0, m, n=0,1,2, \ldots$

Since $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty}\left|\mathrm{b}_{\mathrm{m}, \mathrm{n}}\right|<\infty$, given $\varepsilon>0$, there exist positive integers $\mathrm{M}_{1}, \mathrm{~N}_{1}$ such that

$$
\begin{equation*}
\sum_{\mathrm{m}>\mathrm{M}_{1}, \mathrm{n}>\mathrm{N}_{\mathrm{l}}}^{\infty, \infty}\left|\mathrm{b}_{\mathrm{m}, \mathrm{n}}\right|<\frac{\varepsilon}{4 \mathrm{M}} \tag{2.8}
\end{equation*}
$$

Since, for fixed $k, \ell=0,1,2, \ldots$,
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}=0$,
we can choose positive integers $M_{2}>M_{1}, N_{2}>N_{1}$ such that for $m>M_{2}, n>N_{2}$, we have,

$$
\begin{equation*}
\sum_{\substack{0 \leq \mathrm{k} \leq \mathrm{M}_{1} \\ 0 \leq \ell \leq \mathrm{N}_{1}}}\left|\mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\right|<\frac{\varepsilon}{4 \mathrm{M}} ; \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\substack{0 \leq \mathrm{k} \leq \mathrm{M}_{1} \\ \mathrm{~N}_{1}+1 \leq \ell \leq \mathrm{n}}}\left|\mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\right|<\frac{\varepsilon}{4 \mathrm{M}} ; \tag{2.10}
\end{equation*}
$$

and

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 28-33/ Natarajan
Research Article

$$
\begin{equation*}
\sum_{\substack{\mathrm{M}_{1}+1 \leq \mathrm{k} \leq \mathrm{m} \\ 0 \leq \ell \leq \mathrm{N}_{1}}}\left|\mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\right|<\frac{\varepsilon}{4 \mathrm{M}} . \tag{2.11}
\end{equation*}
$$

Then, for $\mathrm{m}>\mathrm{M}_{2}, \mathrm{n}>\mathrm{N}_{2}$,

$$
\begin{aligned}
& \left|c_{\mathrm{n}}\right|=\left|\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n} \ell} \mathrm{~b}_{\mathrm{k}, \ell}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\substack{0 \leq k \leq M_{1} \\
0 \leq<\leq \mathrm{N}_{1}}}\left|a_{m-k, n-\ell}\right|\left|b_{k, \ell}\right|+\sum_{\substack{0 \leq k \leq M_{1} \\
\ell>\mathrm{N}_{1}}}\left|a_{m-k, n-\ell}\right|\left|b_{k, \ell}\right|+\sum_{\substack{k>M_{1} \\
0 \leq<\leq \mathrm{N}_{1}}}\left|a_{m-k, n-\ell}\right|\left|b_{k, \ell}\right|+\sum_{\substack{\mathrm{k}>M_{1} \\
\ell>\mathrm{N}_{1}}}\left|a_{m-k, n-\ell}\right|\left|b_{k, \ell}\right| \\
& <\mathrm{M} \frac{\varepsilon}{4 \mathrm{M}}+\mathrm{M} \frac{\varepsilon}{4 \mathrm{M}}+\mathrm{M} \frac{\varepsilon}{4 \mathrm{M}}+\mathrm{M} \frac{\varepsilon}{4 \mathrm{M}} \\
& =\varepsilon, \quad \text { using }(2.7),(2.8),(2.9),(2.10) \text { and (2.11). }
\end{aligned}
$$

It now follows that
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{c}_{\mathrm{m}, \mathrm{n}}=0$,
completing the proof of the theorem.
We now have the following results on the cauchy multiplication of ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$)-summable double sequences and double series.
Theorem 2.7:
If $\sum_{m, n=0}^{\infty, \infty}\left|a_{m, n}\right|<\infty$ and $\left\{b_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to B, then $\left\{c_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to $A B$, where, $\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$
and

$$
\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}=\mathrm{A} .
$$

Proof.
Let, $\left\{\mathrm{t}_{\mathrm{m}, \mathrm{n}}\right\}$, $\left\{\tau_{\mathrm{m}, \mathrm{n}}\right\}$ be the $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$-transforms of $\left\{\mathrm{b}_{\mathrm{m}, \mathrm{n}}\right\},\left\{\mathrm{c}_{\mathrm{m}, \mathrm{n}}\right\}$ respectively,
i.e., $\mathrm{t}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}$,

$$
\tau_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{c}_{\mathrm{k}, \ell}, \quad \mathrm{~m}, \mathrm{n}=0,1,2, \ldots .
$$

We can work to see that

$$
\tau_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\left(\mathrm{t}_{\mathrm{k}, \ell}-\mathrm{B}\right)+\mathrm{B}\left(\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{k}, \ell}\right), \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots
$$

where, $\lim _{\mathrm{k}+\ell \rightarrow \infty} \mathrm{t}_{\mathrm{k}, \ell}=B$. Since $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}}\right|<\infty$ and $\lim _{\mathrm{k}+\ell \rightarrow \infty}\left(\mathrm{t}_{\mathrm{k}, \ell}-\mathrm{B}\right)=0$, using Theorem 2.6, it follows that $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}\left[\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\left(\mathrm{t}_{\mathrm{k}, \ell}-\mathrm{B}\right)\right]=0$,
so that

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2016 Vol. 6 (3) July-September, pp. 28-33/ Natarajan

Research Article

$$
\begin{aligned}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \tau_{\mathrm{m}, \mathrm{n}} & =\mathrm{B}\left(\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}\right) \\
& =\mathrm{AB},
\end{aligned}
$$

i.e., $\left\{c_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to $A B$, completing the proof of the theorem.

It is easy to prove the following result on similar lines.
Theorem 2.8:
If $\sum_{m, n=0}^{\infty, \infty}\left|a_{m, n}\right|<\infty, \sum_{m, n=0}^{\infty, \infty} b_{m, n}$ is $\left(M, \lambda_{m, n}\right)$-summable to B, then $\sum_{m, n=0}^{\infty, \infty} c_{m, n}$ is $\left(M, \lambda_{m, n}\right)$-summable to $A B$, where,
$\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$
and
$\sum_{m, n=0}^{\infty, \infty} a_{m, n}=A$.
As in the case of the Natarajan method ($\mathrm{M}, \boldsymbol{\lambda}_{\mathrm{n}}$) for simple sequences (Natarajan, 2013), we can prove the following result, using Theorem 2.6.
Theorem 2.9:
Let $\left(M, \lambda_{m, n}\right),\left(M, \mu_{m, n}\right)$ be regular methods. Then, $\left(M, \lambda_{m, n}\right)\left(M, \mu_{m, n}\right)$ is also regular, where, we define, for $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$,
$\left(\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)\right)(\mathrm{x})=\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\left(\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)(\mathrm{x})\right)$.
We can prove the following results too.
Theorem 2.10:
For given regular methods ($M, \lambda_{m, n}$), ($M, \mu_{m, n}$) and ($M, t_{m, n}$),
$\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$
if and only if
$\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$.
In view of Theorem 3.6 of (Natarajan (to appear)), we can reformulate Theorem 2.10 as follows:
Theorem 2.11:
Given the regular methods $\left(M, \lambda_{m, n}\right),\left(M, \mu_{m, n}\right)$ and $\left(M, t_{m, n}\right)$, the following statements are equivalent:
(i) $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$;
(ii) $\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$;
and
(iii) $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty}\left|\mathrm{k}_{\mathrm{m}, \mathrm{n}}\right|<\infty$ and $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{k}_{\mathrm{m}, \mathrm{n}}=1$,
where,
$\frac{\mu(\mathrm{x})}{\lambda(\mathrm{x})}=\mathrm{k}(\mathrm{x})=\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{k}_{\mathrm{m}, \mathrm{n}} \mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}} ;$
$\lambda(\mathrm{x})=\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \lambda_{\mathrm{m}, \mathrm{n}} \mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}$;
and
$\mu(x)=\sum_{m, n=0}^{\infty, \infty} \mu_{m, n} x^{m} y^{n}$.

REFERENCES

Hardy GH (1949). Divergent Series. (Clarendon Press, Oxford, UK).

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 28-33/ Natarajan

Research Article

Natarajan PN (2013). Iteration product of Natarajan methods of summability. International Journal of Physics and Mathematical Sciences 3 25-29.
Natarajan PN (2014). A new definition of convergence of a double sequence and a double series and Silverman-Toeplitz theorem. Commentationes Mathematicae (Prace Matematyczne) 54 129-139.
Natarajan PN (No Date). Natarajan method of summability for double sequences and series. An. Stiint. Univ. Al. I. Cuza Iasi Math. (to appear).

