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ABSTRACT 

In this paper, we study some properties of the (M, λm,n) method of summability introduced earlier by the 

author in (Natarajan (to appear)). 
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INTRODUCTION AND PRELIMINARIES 
To make the paper self-contained, we recall the following (Natarajan, 2014): 

Definition 1.1: 
Let {xm,n} be a double sequence.  We say that 

x,xlim nm,
nm

=
∞→+

 

if for every ε > 0, the set 

{(m, n) ∈ N
2
 : |xm,n − x| ≥ ε} 

is finite, N being the set of positive integers. In such a case, x is unique and x is called the limit of the 

double sequence {xm,n}.  We also say that {xm,n} converges to x. 

Definition 1.2: 
Let {xm,n} be a double sequence.  We say that 

s,x
,

0nm,

nm,
=∑

∞∞

=

 

if 

s,slim nm,
nm

=
∞→+

 

where, 

0,1,2,....nm,,xs
nm,

0k,

k,nm,
==∑

=l

l
 

In such a case, we say that the double series ∑
∞∞

=

,

0nm,

nm,
x  converges to s. 

Remark 1.3: 

If x,xlim nm,
nm

=
∞→+

 then the double sequence {xm,n} is bounded. 

It is easy to prove the following results. 

Theorem 1.4: 

x,xlim nm,
nm

=
∞→+

 

if and only if 

(i) x,xlim nm,
m

=
∞→

  n = 0, 1, 2, ...; 

(ii) x,xlim nm,
n

=
∞→

  m = 0, 1, 2, ...; 

and 

(iii) for any ε > 0, there exists N ∈ N such that 
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|xm,n − x| < ε,   m, n ≥ N, 

which we write as 

xxlim nm,
n,m

=
∞→

 

(Note that this is Pringsheim’s definition of limit of a double sequence).  

Theorem 1.5: 

If the double series ∑
∞∞

=

,

0nm,

nm,
x  converges, then, 

.0xlim nm,
nm

=
∞→+

 

However, the converse is not true. 

Definition 1.6: 

∑
∞∞

=

,

0nm,

nm,x  is said to converge absolutely, if ∑
∞∞

=

,

0nm,

nm,x  converges. 

Note that if ∑
∞∞

=

,

0nm,

nm,
x  converges absolutely, it converges. However, the converse is not true. 

Some Properties of the (M, λλλλm,n) Method or the Natarajan Method 

Definition 2.1: 
Given a 4-dimensional infinite matrix A = (am,n,k,ℓ), m, n, k, ℓ = 0, 1, 2, ... and a double sequence {xk,ℓ},  

k, ℓ = 0, 1, 2, ..., by the A-transform of x = {xk,ℓ}, we mean the sequence A(x) = {(Ax)m,n}, where,  

0,1,2,...,nm,,xa(Ax)
,

0k,

k,k,n,m,nm,
==∑

∞∞

=l

ll
 

assuming that the double series on the right converge. If s,(Ax)lim nm,
nm

=
∞→+

 we say that the double sequence 

x = {xk,ℓ} is A-summable or summable A to s, written as, 

xk,ℓ → s(A). 

If s,(Ax)lim nm,
nm

=
→∞+

 whenever s,xlim k,
k

=
∞→+

l
l

 we say that the 4-dimensional infinite matrix A is 

“regular”. 

The following important theorem on the regularity of a 4-dimensional infinite matrix was proved by 

Natarajan (2014). 

Theorem 2.2 (Silverman-Toeplitz): 

The 4-dimensional infinite matrix A = (am,n,k,ℓ) is regular if and only if  

(2.1)  ;asup
,

0k,

k,n,m,
0nm,

∞<∑
∞∞

=≥
l

l
 

(2.2) 0,1,2,...;k,0,alim k,n,m,
nm

==
∞→+

l
l

 

(2.3) 1;alim
,

0k,

k,n,m,
nm

=∑
∞∞

=
∞→+

l

l
 

(2.4) 0,1,2,...;0,alim
0k

k,n,m,
nm

==∑
∞

=
∞→+

l
l

 

and 

(2.5)  0,1,2,....k0,alim
0

k,n,m,
nm

==∑
∞

=
∞→+

l

l
 

(Natarajan (to appear)) introduced the (M, λm,n) method for double sequences and extended some of the 

results of the (M, λn) method for simple sequences. 
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Definition 2.3: 

Let {λm,n} be a double sequence such that .λ
,

0nm,

nm,
∞<∑

∞∞

=

  The (M, λm,n) method is defined by the  

4-dimensional infinite matrix (am,n,k,ℓ), where, 



 ≤≤≤≤

= −−

otherwise.0,

n;m,0k0,λ
a nk,m

k,n,m,

l
l

l
 

Definition 2.4: 

We say that (M, λm,n) is included in (M, µm,n) (or ((M, µm,n) includes (M, λm,n)), written as, 

(M, λm,n) ⊆ (M, µm,n)   (or   (M, µm,n) ⊇ (M, λm,n)), 

If sk,ℓ → σ(M, λm,n) implies that sk,ℓ → σ(M, µm,n) too. 

The methods (M, λm,n), (M, µm,n) are said to be equivalent if (M, λm,n) ⊆ (M, µm,n) and vice versa. 

It is easy to prove the following result. 

Theorem 2.5: (see Natarajan (to appear)) 

The method (M, λm,n) is regular if and only if  

(2.6) 1.λ
,

0nm,

nm,
=∑

∞∞

=

 

Analogous to Theorem 176 of Hardy (1949), we have the following result in the context of double 

sequences and double series. 

Theorem 2.6: 

If 0alim
nm,

nm
=

∞→+
 and ,b

,

0nm,

nm,
∞<∑

∞∞

=

 then 

0,clim
nm,

nm
=

∞→+
 

where, 

0,1,2,....nm,,bac
nm,

0k,

k,nk,mnm,
==∑

=

−−

l

ll
 

Proof. 
Since {am,n}, {bm,n} are convergent, they are bounded and so, 

(2.7) |am,n| ≤ M,   |bm,n| ≤ M,   M > 0, m, n = 0, 1, 2, .... 

Since ,b
,

0nm,

nm,
∞<∑

∞∞

=

 given ε > 0, there exist positive integers M1, N1 such that  

(2.8) .
4M

ε
b

,

Nn,Mm

nm,

11

<∑
∞∞

>>

 

Since, for fixed k, ℓ = 0, 1, 2, ..., 

0,alim
nk,m

nm
=−−

∞→+
l

 

we can choose positive integers M2 > M1, N2 > N1 such that for m > M2, n > N2, we have, 

(2.9) ;
4M

ε
a

1

1
N0
Mk0

nk,m∑
≤≤
≤≤

−− <

l

l
 

(2.10) ;
4M

ε
a

n1N
Mk0

nk,m

1

1

∑
≤≤+

≤≤
−− <

l

l
 

and 
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(2.11) .
4M

ε
a

1

1
N0

mk1M

nk,m∑
≤≤

≤≤+
−− <

l

l
 

Then, for m > M2, n > N2, 

(2.11). and (2.10) (2.9), (2.8), (2.7),usingε,

4M

ε
M

4M

ε
M

4M

ε
M

4M

ε
M

babababa

babababa

bac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

N
Mk

k,nk,m

N0
Mk

k,nk,m

N
Mk0

k,nk,m

N0
Mk0

k,nk,m

N
Mk

k,nk,m

N0
Mk

k,nk,m

N
Mk0

k,nk,m

N0
Mk0

k,nk,m

nm,

0k,

k,nk,mn

=

+++<

+++≤

+++=

=

∑∑∑∑

∑∑∑∑

∑

>
>

−−

≤≤
>

−−

>
≤≤

−−

≤≤
≤≤

−−

>
>

−−

≤≤
>

−−

>
≤≤

−−

≤≤
≤≤

−−

=

−−

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

 

It now follows that 

0,clim
nm,

nm
=

∞→+
 

completing the proof of the theorem.            □ 

We now have the following results on the cauchy multiplication of (M, λm,n)-summable double sequences 

and double series. 

Theorem 2.7: 

If ∞<∑
∞∞

=

,

0nm,

nm,
a  and {bm,n} is (M, λm,n)-summable to B, then {cm,n} is (M, λm,n)-summable to AB, where, 

0,1,2,...nm,,bac
nm,

0k,

k,nk,mnm,
==∑

=

−−

l

ll
 

and 

A.a
,

0nm,

nm,
=∑

∞∞

=

 

Proof. 

Let, {tm,n},  {τm,n} be the (M, λm,n)-transforms of {bm,n}, {cm,n} respectively, 

0,1,2,....nm,,cλτ

,bλti.e.,

nm,

0k,

k,nk,mnm,

nm,

0k,

k,nk,mnm,

==

=

∑

∑

=

−−

=

−−

l

ll

l

ll

 

We can work to see that 

0,1,2,...,nm,,aBB)(taτ
nm,

0k,

k,

nm,

0k,

k,nk,mnm,
=










+−= ∑∑

==

−−

l

l

l

ll
 

where, B.tlim k,
k

=
∞→+

l
l

  Since ∞<∑
∞∞

=

,

0nm,

nm,
a  and 0,B)(tlim k,

k
=−

∞→+
l

l

  using Theorem 2.6, it follows that 

0,B)(talim
nm,

0k,

k,nk,m
nm

=







−∑

=

−−
∞→+

l

ll
 

so that 
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AB,

aBτlim
,

0nm,

nm,nm,
nm

=











= ∑

∞∞

=
∞→+  

i.e., {cm,n} is (M, λm,n)-summable to AB, completing the proof of the theorem.                 □ 

It is easy to prove the following result on similar lines. 

Theorem 2.8: 

If ,a
,

0nm,

nm,
∞<∑

∞∞

=

 ∑
∞∞

=

,

0nm,

nm,
b  is (M, λm,n)-summable to B, then ∑

∞∞

=

,

0nm,

nm,
c  is (M, λm,n)-summable to AB, where, 

0,1,2,...nm,,bac
nm,

0k,

k,nk,mnm, ==∑
=

−−

l

ll
 

and 

A.a
,

0nm,

nm,
=∑

∞∞

=

 

As in the case of the Natarajan method (M, λn) for simple sequences (Natarajan, 2013), we can prove the 

following result, using Theorem 2.6. 

Theorem 2.9: 

Let (M, λm,n), (M, µm,n) be regular methods. Then, (M, λm,n) (M, µm,n) is also regular, where, we define, for 

x = {xm,n}, 

((M, λm,n) (M, µm,n))(x) = (M, λm,n) ((M, µm,n)(x)). 

We can prove the following results too. 

Theorem 2.10: 

For given regular methods (M, λm,n), (M, µm,n) and (M, tm,n), 

(M, λm,n) ⊆ (M, µm,n) 

if and only if 

(M, tm,n) (M, λm,n) ⊆ (M, tm,n) (M, µm,n). 

In view of Theorem 3.6 of (Natarajan (to appear)), we can reformulate Theorem 2.10 as follows: 

Theorem 2.11: 

Given the regular methods (M, λm,n), (M, µm,n) and (M, tm,n), the following statements are equivalent: 

(i) (M, λm,n) ⊆ (M, µm,n); 

(ii) (M, tm,n) (M, λm,n) ⊆ (M, tm,n) (M, µm,n); 

and 

(iii) ∞<∑
∞∞

=

,

0nm,

nm,
k  and ,1k

,

0nm,

nm,
=∑

∞∞

=

 

where, 

;yxkk(x)
λ(x)

µ(x) ,

0nm,

nm

nm,∑
∞∞

=

==  

;yxλλ(x)
,

0nm,

nm

nm,∑
∞∞

=

=  

and 

.yxµµ(x)
,

0nm,

nm

nm,∑
∞∞

=

=  
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