Research Article

SOME PROPERTIES OF THE NATARAJAN METHOD OF SUMMABILITY FOR DOUBLE SEQUENCES IN ULTRAMETRIC FIELDS

*P N Natarajan
Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India
*Author for Correspondence

Abstract

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric field. Entries of double sequences, double series and 4 -dimensional infinite matrices are in K. In this paper, we study some properties of the ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$) method of summability introduced earlier by the author in Natarajan (2014).

Keywords: Ultrametric Field, Double Sequence, Double Series, ($M, \lambda_{m, n}$) Method (or the Natarajan Method) of Summability, Cauchy Product, Inclusion, Equivalence, Iteration Product

INTRODUCTION AND PRELIMINARIES

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric field. Entries of double sequences, double series and 4-dimensional infinite matrices are in K .
To make the paper self-contained, we recall the following (Natarajan and Srinivasan (2002):
Definition 1.1: Let $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}, \mathrm{m}, \mathrm{n}=0,1,2, \ldots$ be a double sequence in K . Let $\mathrm{x} \in \mathrm{K}$. We say that
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}$,
if for every $\varepsilon>0$, the set
$\left\{(\mathrm{m}, \mathrm{n}) \in \mathrm{N}^{2}:\left|\mathrm{X}_{\mathrm{m}, \mathrm{n}}-\mathrm{x}\right| \geq \varepsilon\right\}$
is finite, N being the set of positive integers. In such a case, x is unique and x is called the limit of the double sequence $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$. We also say that $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ converges to x .
Definition 1.2: Let $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ be a double sequence in K and $\mathrm{s} \in \mathrm{K}$. We say that
$\sum_{m, n=0}^{\infty, \infty} x_{m, n}=s$,
if,
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{s}_{\mathrm{m}, \mathrm{n}}=\mathrm{s}$,
where,
$\mathrm{s}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{x}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$.
In such a case, we say that the double series $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}$ converges to s.
Remark 1.1: If $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}$, then the double sequence $\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$ is bounded.
It is easy to prove the following results.
Theorem 1.1:
$\lim _{m+n \rightarrow \infty} x_{m, n}=x$,
if and only if
(i) $\lim _{\mathrm{m} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}, \mathrm{n}=0,1,2, \ldots$;
(ii) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}, \quad \mathrm{m}=0,1,2, \ldots$;

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 22-27/ Natarajan

Research Article

and
(iii) for any $\varepsilon>0$, there exists $N \in N$ such that $\left|x_{m, n}-x\right|<\varepsilon, m, n \geq N$,
which we write as

$$
\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{m}, \mathrm{n}}=\mathrm{x}
$$

(Note that this is Pringsheim's definition of limit of a double sequence).
Theorem 1.2: The double series $\sum_{m, n=0}^{\infty, \infty} x_{m, n}$ converges if and only if

$$
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{m}, \mathrm{n}}=0 .
$$

4-Dimensional Regular Matrices and Silverman-Toeplitz Theorem

Definition 2.1: Given a 4-dimensional infinite matrix $A=\left(a_{m, n, k, \ell}\right), a_{m, n, k, \ell} \in K, m, n, k, \ell=0,1,2, \ldots$ and a double sequence $\left\{\mathrm{x}_{\mathrm{k}, \ell}\right\}, \mathrm{x}_{\mathrm{k}, \ell} \in \mathrm{K}, \mathrm{k}, \ell=0,1,2, \ldots$, by the A -transform of $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{k}, \ell}\right\}$, we mean the sequence $A(x)=\left\{(A x)_{m, n}\right\}$, where,

$$
(\mathrm{Ax})_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell} \mathrm{x}_{\mathrm{k}, \ell}, \quad \mathrm{~m}, \mathrm{n}=0,1,2, \ldots
$$

assuming that the double series on the right converge. If $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}(\mathrm{Ax})_{\mathrm{m}, \mathrm{n}}=\mathrm{s}$, we say that the double sequence $x=\left\{x_{k, \ell}\right\}$ is summable A or A-summable to s, written as,
$\mathrm{x}_{\mathrm{k}, \ell} \rightarrow \mathrm{s}(\mathrm{A})$.
If $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}(\mathrm{Ax})_{\mathrm{m}, \mathrm{n}}=\mathrm{s}$, whenever $\lim _{\mathrm{k}+\ell \rightarrow \infty} \mathrm{x}_{\mathrm{k}, \ell}=\mathrm{s}$, we say that the 4-dimensional infinite matrix A is "regular".
The following theorem, proved in Natarajan and Srinivasan (2002), gives a characterization of a 4dimensional infinite matrix $A=\left(\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right)$ to be regular, in terms of the entries of the matrix.
Theorem 2.1: (Silverman-Toeplitz) The 4-dimensional infinite matrix $A=\left(a_{m, n, k, \ell}\right)$ is regular if and only if

$$
\begin{gather*}
\sup _{\mathrm{m}, \mathrm{k}, \mathrm{k}, \geq 0}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right|<\infty \tag{2.1}\\
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \ell, \ell}=0, \quad \mathrm{k}, \ell=0,1,2, \ldots \tag{2.2}\\
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{\mathrm{k}, \ell=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}=1 \tag{2.3}\\
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sup _{\mathrm{k} \geq 0}\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right|=0, \quad \ell=0,1,2, \ldots ; \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{m+n \rightarrow \infty} \sup _{\ell \geq 0}\left|a_{m, n, k, k}\right|=0, \quad k=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

Some Properties of the (M, $\lambda_{n, n}$) Method (or the Natarajan Method)

In Natarajan (2014), the author introduced the ($M, \lambda_{m, n}$) method for double sequences and extended some of the results of the $\left(\mathrm{M}, \lambda_{\mathrm{n}}\right)$ method for simple sequences.
Definition 3.1: Let $\left\{\lambda_{\mathrm{m}, \mathrm{n}}\right\}$ be a double sequence in K such that
$\lim _{m+n \rightarrow \infty} \lambda_{m, n}=0$.
The ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$) method is defined by the 4-dimensional infinite matrix $\left(\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}\right)$, where,
$\mathrm{a}_{\mathrm{m}, \mathrm{n}, \mathrm{k}, \ell}= \begin{cases}\lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}, & 0 \leq \mathrm{k} \leq \mathrm{m}, 0 \leq \ell \leq \mathrm{n} ; \\ 0, & \text { otherwise. }\end{cases}$
Definition 3.2: We say that (M, $\lambda_{m, n}$) is included in (M, $\mu_{m, n}$) (or $\left(M, \mu_{m, n}\right)$ includes $\left(M, \lambda_{m, n}\right)$), written as $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)\left(\right.$ or $\left.\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right) \supseteq\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\right)$,
if
$\mathrm{s}_{\mathrm{k}, \ell} \rightarrow \sigma\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$ implies that $\mathrm{s}_{\mathrm{k}, \ell} \rightarrow \sigma\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$
too.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 22-27/ Natarajan

Research Article

The methods ($\mathrm{M}, \boldsymbol{\lambda}_{\mathrm{m}, \mathrm{n}}$), ($\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}$) are said to be "equivalent", if
$\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$ and vice versa.
It is easy to prove the following result.
Theorem 3.1: Natarajan (2014) The method ($\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}$) is regular if and only if

$$
\begin{equation*}
\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \lambda_{\mathrm{m}, \mathrm{n}}=1 . \tag{3.1}
\end{equation*}
$$

Analogous to Theorem 1 of Natarajan (1978), we have the following result in the context of double sequences.
Theorem 3.2: Natarajan and Sakthivel (2008) If $\lim _{m+n \rightarrow \infty} a_{m, n}=0$ and $\lim _{m+n \rightarrow \infty} b_{m, n}=0$, then,
$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{c}_{\mathrm{m}, \mathrm{n}}=0$,
where,
$\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$.
Proof: Since $\lim _{m+n \rightarrow \infty} a_{m, n}=0, \lim _{m+n \rightarrow \infty} b_{m, n}=0$, there exists $M>0$ such that
$\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}} \mathrm{l}<\mathrm{M}, \mathrm{lb}_{\mathrm{m}, \mathrm{n}}\right|<\mathrm{M}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$.
Given $\varepsilon>0$, choose positive integers $\mathrm{M}_{1}, \mathrm{~N}_{1}$ such that
$\left|\mathrm{a}_{\mathrm{m}, \mathrm{n}}\right|<\frac{\varepsilon}{\mathrm{M}},\left|\mathrm{b}_{\mathrm{m}, \mathrm{n}}\right|<\frac{\varepsilon}{\mathrm{M}}, \quad \mathrm{m}>\mathrm{M}_{1}, \mathrm{n}>\mathrm{N}_{1}$.
Since $\lim _{m+n \rightarrow \infty} a_{m-k, n-\ell}=0$, for every fixed $k, \ell=0,1,2, \ldots$, we can choose positive intergers $M_{2}>M_{1}, N_{2}>$ N_{1} such that for $\mathrm{m}>\mathrm{M}_{2}, \mathrm{n}>\mathrm{N}_{2}$,

$$
\begin{aligned}
& \sup _{\substack{0 \leq k \leq M_{1} \\
0 \leq \ell \leq \mathrm{N}_{1}}}\left|a_{m-k, n-\ell}\right|<\frac{\varepsilon}{M} ; \\
& \sup _{\substack{0 \leq k \leq M_{1}, \sum_{1} \\
N_{1}+1 \leq \leq n}}\left|a_{m-k, n-\ell}\right|<\frac{\varepsilon}{M} ;
\end{aligned}
$$

and

$$
\sup _{\substack{M_{1}+1 \leq \mathrm{k} \leq \mathrm{m} \\ 0 \leq \leq \leq \mathrm{N}_{\mathrm{l}}}}\left|\mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\right|<\frac{\varepsilon}{\mathrm{M}} .
$$

Thus, for $m>M_{2}, n>N_{2}$,

$$
\begin{aligned}
& \left|\mathrm{c}_{\mathrm{m}, \mathrm{n}}\right|=\left|\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}\right| \\
& =\left|\sum_{\substack{0 \leq \mathrm{k} \leq \mathrm{M}_{1} \\
0 \leq \leq \leq \mathrm{N}_{\mathrm{t}}}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}+\sum_{\substack{0 \leq k \leq \mathrm{M}_{1} \\
\ell>\mathrm{N}_{\mathrm{t}}}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}+\sum_{\substack{\mathrm{k}>\mathrm{M}_{1} \\
0 \leq<\leq \mathrm{N}_{\mathrm{l}}}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}+\sum_{\substack{\mathrm{k}>\mathrm{M}_{1} \\
\ell>\mathrm{N}_{\mathrm{t}}}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left[\frac{\varepsilon}{\mathrm{M}} \mathrm{M}, \frac{\varepsilon}{\mathrm{M}} \mathrm{M}, \frac{\varepsilon}{\mathrm{M}} \mathrm{M}, \frac{\varepsilon}{\mathrm{M}} \mathrm{M}\right] \\
& =\varepsilon .
\end{aligned}
$$

In other words,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 22-27/ Natarajan

Research Article

$\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{c}_{\mathrm{m}, \mathrm{n}}=0$,
completing the proof of the theorem.
We now have the following results on the Cauchy multiplication of $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$-summable double sequences and double series.
Theorem 3.3: If $\lim _{m+n \rightarrow \infty} a_{m, n}=0$ and $\left\{b_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to B, then $\left\{c_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to AB , where,
$\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$
and

$$
\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}=\mathrm{A} .
$$

Proof: We first note that $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}=0$ implies that $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}$ converges in view of Theorem 1.2. Let $\left\{\mathrm{t}_{\mathrm{m}, \mathrm{n}}\right\}$, $\left\{\tau_{m, n}\right\}$ be the $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)$-transforms of $\left\{\mathrm{b}_{\mathrm{m}, \mathrm{n}}\right\},\left\{\mathrm{c}_{\mathrm{m}, \mathrm{n}}\right\}$ respectively,

$$
\begin{aligned}
& \text { i.e., } \quad \mathrm{t}_{\mathrm{m}, \mathrm{n}} \\
&=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \\
& \tau_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{c}_{\mathrm{k}, \ell}, \quad \mathrm{~m}, \mathrm{n}=0,1,2, \ldots
\end{aligned}
$$

We can work out to see that

$$
\begin{align*}
\tau_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell==}^{\mathrm{m}, \mathrm{n}} & \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\left(\mathrm{t}_{\mathrm{k}, \ell}-\mathrm{B}\right) \\
& +\mathrm{B}\left(\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{k}, \ell}\right), \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots \tag{3.2}
\end{align*}
$$

where, $\lim _{k+\ell \rightarrow \infty} t_{k, \ell}=B$, by hypothesis. Since $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}=0$ and $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}\left(\mathrm{t}_{\mathrm{m}, \mathrm{n}}-B\right)=0$, using Theorem 3.2, we see that

$$
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty}\left[\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell}\left(\mathrm{t}_{\mathrm{k}, \ell}-\mathrm{B}\right)\right]=0
$$

so that, taking limit as $\mathrm{m}+\mathrm{n} \rightarrow \infty$ in (3.2), we have,

$$
\begin{aligned}
\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \tau_{\mathrm{m}, \mathrm{n}} & =\mathrm{B}\left(\sum_{\mathrm{k}, \ell=0}^{\infty, \infty} \mathrm{a}_{\mathrm{k}, \ell}\right) \\
& =\mathrm{AB},
\end{aligned}
$$

i.e., $\left\{c_{m, n}\right\}$ is $\left(M, \lambda_{m, n}\right)$-summable to $A B$, completing the proof of the theorem.

It is now easy to prove the following result on similar lines.
Theorem 3.4: If $\lim _{m+n \rightarrow \infty} a_{m, n}=0, \sum_{m, n=0}^{\infty, \infty} b_{m, n}$ is $\left(M, \lambda_{m, n}\right)$-summable to B, then $\sum_{m, n=0}^{\infty, \infty} c_{m, n}$ is $\left(M, \lambda_{m, n}\right)$-summable to AB , where,
$\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \quad \mathrm{m}, \mathrm{n}=0,1,2, \ldots$
and

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 22-27/ Natarajan

Research Article

$$
\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{a}_{\mathrm{m}, \mathrm{n}}=\mathrm{A} .
$$

As in the case of the ($\mathrm{M}, \boldsymbol{\lambda}_{\mathrm{n}}$) method for simple sequences (Natarajan, 2012), using Theorem 3.2 again, we can prove
Theorem 3.5: If $\sum_{m, n=0}^{\infty, \infty} a_{m, n}$ is $\left(M, \lambda_{m, n}\right)$-summable to $A, \sum_{m, n=0}^{\infty, \infty} b_{m, n}$ is $\left(M, \mu_{m, n}\right)$-summable to B, then $\sum_{m, n=0}^{\infty, \infty} c_{m, n}$ is $\left(\mathrm{M}, \gamma_{\mathrm{m}, \mathrm{n}}\right)$-summable to AB , where,

$$
\begin{gathered}
\mathrm{c}_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \mathrm{a}_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mathrm{b}_{\mathrm{k}, \ell}, \\
\gamma_{\mathrm{m}, \mathrm{n}}=\sum_{\mathrm{k}, \ell=0}^{\mathrm{m}, \mathrm{n}} \lambda_{\mathrm{m}-\mathrm{k}, \mathrm{n}-\ell} \mu_{\mathrm{k}, \ell}, \quad \mathrm{~m}, \mathrm{n}=0,1,2, \ldots
\end{gathered}
$$

Again as in the case of the Natarajan method ($\mathrm{M}, \boldsymbol{\lambda}_{\mathrm{n}}$) for simple sequences (Natarajan, 2013), we can prove the following result, using Theorem 3.2.
Theorem 3.6: Let $\left(M, \lambda_{m, n}\right)$, (M, $\left.\mu_{m, n}\right)$ be regular methods. Then, $\left(M, \lambda_{m, n}\right)\left(M, \mu_{m, n}\right)$ is also regular, where, we define, for $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{m}, \mathrm{n}}\right\}$,
$\left.\left(\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)\right)(\mathrm{x})=\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right)\left(\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)\right)(\mathrm{x})\right)$.
We can prove the following results too.
Theorem 3.7: For given regular methods $\left(M, \lambda_{m, n}\right)$, $\left(M, \mu_{m, n}\right)$ and $\left(M, t_{m, n}\right)$, let $\left|\lambda_{m, n}\right|<\left|\lambda_{0,0}\right|,\left.\right|_{m, n}\left|<\left|t_{0,0}\right|\right.$, $(\mathrm{m}, \mathrm{n}) \neq(0,0), \mathrm{m}, \mathrm{n}=0,1,2, \ldots$ Then
$\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$
if and only if
$\left(M, t_{m, n}\right)\left(M, \lambda_{m, n}\right) \subseteq\left(M, t_{m, n}\right)\left(M, \mu_{m, n}\right)$.
In view of Theorem 3.6 of Natarajan (2014), we can reformulate Theorem 3.7 as follows:
Theorem 3.8: Given the regular methods ($M, \lambda_{m, n}$), ($M, \mu_{m, n}$) and ($M, t_{m, n}$), $\left|\lambda_{m, n}\right|<\left|\lambda_{0,0}\right|,\left|t_{m, n}\right|<\left|t_{0,0}\right|$, $(m, n) \neq(0,0), m, n=0,1,2, \ldots$, the following statements are equivalent:
(i) $\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$;
(ii) $\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \lambda_{\mathrm{m}, \mathrm{n}}\right) \subseteq\left(\mathrm{M}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}\right)\left(\mathrm{M}, \mu_{\mathrm{m}, \mathrm{n}}\right)$;
and
(iii) $\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \mathrm{k}_{\mathrm{m}, \mathrm{n}}=0$ and $\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \mathrm{k}_{\mathrm{m}, \mathrm{n}}=1$,
where,
$\frac{\mu(x)}{\lambda(x)}=k(x)=\sum_{m, n=0}^{\infty, \infty} k_{m, n} x^{m} y^{n}$,
$\lambda(\mathrm{x})=\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty, \infty} \lambda_{\mathrm{m}, \mathrm{n}} \mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}} ;$
and

$$
\mu(x)=\sum_{m, n=0}^{\infty, \infty} \mu_{m, n} x^{m} y^{n}
$$

REFERENCES

Natarajan PN (1978). Multiplication of series with terms in a non-archimedean field. Simon Stevin 52 157-160.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (3) July-September, pp. 22-27/ Natarajan

Research Article

Natarajan PN and Srinivasan V (2002). Silverman-Toeplitz theorem for double sequences and series and its application to Nörlund means in non-archimedean fields. Annales Mathématiques Blaise Pascal 9 85-100.
Natarajan PN and Sakthivel S (2008). Multiplication of double series and convolution of double infinite matrices in non-archimedean fields. Indian Journal of Mathematics 50 115-123.
Natarajan PN (2012). Some properties of the ($\mathrm{M}, \lambda_{\mathrm{n}}$) method of summability in ultrametric fields. International Journal of Physics and Mathematical Sciences 2 169-176.
Natarajan PN (2013). Cauchy multiplication of (M, λ_{n}) summable series in ultrametric fields. International Journal of Physics and Mathematical Sciences 3 51-55.
Natarajan PN (2013). On the Natarajan method of summability in ultrametric fields. $5^{\text {th }}$ Dr. George Bachman Memorial Conference Proceedings. Indian Journal of Mathematics 55(Supplement) 125-132.
Natarajan PN (2014). Natarajan summability method for double sequences and double series in ultrametric fields. Advancement and Development in Mathematical Sciences 69-17.

