SOME PROPERTIES OF THE NATARAJAN METHOD OF SUMMABILITY FOR DOUBLE SEQUENCES IN ULTRAMETRIC FIELDS

*P N Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India *Author for Correspondence

ABSTRACT

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric field. Entries of double sequences, double series and 4-dimensional infinite matrices are in K. In this paper, we study some properties of the (M, $\lambda_{m,n}$) method of summability introduced earlier by the author in Natarajan (2014).

Keywords: Ultrametric Field, Double Sequence, Double Series, $(M, \lambda_{m,n})$ Method (or the Natarajan Method) of Summability, Cauchy Product, Inclusion, Equivalence, Iteration Product

INTRODUCTION AND PRELIMINARIES

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric field. Entries of double sequences, double series and 4-dimensional infinite matrices are in K.

To make the paper self-contained, we recall the following (Natarajan and Srinivasan (2002):

Definition 1.1: Let $\{x_{m,n}\}$, m, n = 0, 1, 2, ... be a double sequence in K. Let $x \in K$. We say that

 $\lim_{m+n\to\infty} x_{m,n} = x,$

if for every $\varepsilon > 0$, the set

 $\{(\mathbf{m},\mathbf{n})\in\mathbb{N}^2: |\mathbf{x}_{\mathbf{m},\mathbf{n}}-\mathbf{x}|\geq\varepsilon\}$

is finite, N being the set of positive integers. In such a case, x is unique and x is called the limit of the double sequence $\{x_{m,n}\}$. We also say that $\{x_{m,n}\}$ converges to x.

Definition 1.2: Let $\{x_{m,n}\}$ be a double sequence in K and $s \in K$. We say that

$$\begin{split} &\sum_{m,n=0}^{\infty} x_{m,n} = s, \\ &\text{if,} \\ &\lim_{m+n\to\infty} s_{m,n} = s, \\ &\text{where,} \\ &s_{m,n} = \sum_{k,\ell=0}^{m,n} x_{k,\ell}, \quad m,n = 0,1,2,.... \end{split}$$

In such a case, we say that the double series $\sum_{m,n=0}^{\infty} x_{m,n}$ converges to s.

Remark 1.1: If $\lim_{m,n} x_{m,n} = x$, then the double sequence $\{x_{m,n}\}$ is bounded.

It is easy to prove the following results.

Theorem 1.1: $\lim_{m \to \infty} x_{m,n} = x,$ if and only if (i) $\lim_{m \to \infty} x_{m,n} = x, \quad n = 0, 1, 2, ...;$ (ii) $\lim_{n \to \infty} x_{m,n} = x, \quad m = 0, 1, 2, ...;$

Centre for Info Bio Technology (CIBTech)

Research Article

and

(iii) for any $\epsilon>0,$ there exists $N\in \mathbb{N}$ such that $|x_{m,n}-x|<\epsilon,$ m, $n\geq N,$ which we write as

 $\lim_{m \to \infty} x_{mn} = x$

(Note that this is Pringsheim's definition of limit of a double sequence).

Theorem 1.2: The double series $\sum_{m,n=0}^{\infty,\infty} x_{m,n}$ converges if and only if

 $\lim_{m \to \infty} x_{m,n} = 0.$

4-Dimensional Regular Matrices and Silverman-Toeplitz Theorem

Definition 2.1: Given a 4-dimensional infinite matrix $A = (a_{m,n,k,\ell})$, $a_{m,n,k,\ell} \in K$, m, n, k, $\ell = 0, 1, 2, ...$ and a double sequence $\{x_{k,\ell}\}$, $x_{k,\ell} \in K$, k, $\ell = 0, 1, 2, ...$, by the A-transform of $x = \{x_{k,\ell}\}$, we mean the sequence $A(x) = \{(Ax)_{m,n}\}$, where,

$$(Ax)_{m,n} = \sum_{k,\ell=0}^{\infty,\infty} a_{m,n,k,\ell} x_{k,\ell}, \quad m,n = 0,1,2,...,$$

assuming that the double series on the right converge. If $\lim_{m+n\to\infty} (Ax)_{m,n} = s$, we say that the double sequence $x = \{x_{k,\ell}\}$ is summable A or A-summable to s, written as,

$$\mathbf{x}_{\mathbf{k},\ell} \to \mathbf{s}(\mathbf{A}).$$

If $\lim_{m+n\to\infty} (Ax)_{m,n} = s$, whenever $\lim_{k+\ell\to\infty} x_{k,\ell} = s$, we say that the 4-dimensional infinite matrix A is ``regular''.

The following theorem, proved in Natarajan and Srinivasan (2002), gives a characterization of a 4dimensional infinite matrix $A = (a_{m,n,k,\ell})$ to be regular, in terms of the entries of the matrix.

Theorem 2.1: (Silverman-Toeplitz) The 4-dimensional infinite matrix $A = (a_{m,n,k,\ell})$ is regular if and only if (2.1) $\sup_{a_{m,n,k,\ell}} |a_{m,n,k,\ell}| < \infty;$

(2.1)
$$\sup_{\mathbf{m},\mathbf{n},\mathbf{k},\ell\geq 0} |\mathbf{a}_{\mathbf{m},\mathbf{n},\mathbf{k},\ell}| < \infty;$$

(2.2)
$$\lim_{m+n\to\infty} a_{m,n,k,\ell} = 0, \quad k, \ell = 0, 1, 2, ...;$$

(2.3)
$$\lim_{m+n\to\infty}\sum_{k,\ell=0}^{\infty,\infty}a_{m,n,k,\ell}=1;$$

(2.4)
$$\lim_{m+n\to\infty} \sup_{k\geq 0} |a_{m,n,k,\ell}| = 0, \quad \ell = 0, 1, 2, ...;$$

(2.5)
$$\lim_{m+n\to\infty} \sup_{\ell\geq 0} |a_{m,n,k,\ell}| = 0, \quad k = 0, 1, 2, \dots$$

Some Properties of the $(M, \lambda_{m,n})$ Method (or the Natarajan Method)

In Natarajan (2014), the author introduced the $(M, \lambda_{m,n})$ method for double sequences and extended some of the results of the (M, λ_n) method for simple sequences.

Definition 3.1: Let $\{\lambda_{m,n}\}$ be a double sequence in K such that

 $\lim_{m \to \infty} \lambda_{m,n} = 0.$

The $(M, \lambda_{m,n})$ method is defined by the 4-dimensional infinite matrix $(a_{m,n,k,\ell})$, where,

 $a_{m,n,k,\ell} = \begin{cases} \lambda_{m-k,n-\ell}, & 0 \le k \le m, 0 \le \ell \le n; \\ 0, & \text{otherwise.} \end{cases}$

Definition 3.2: We say that $(M, \lambda_{m,n})$ is included in $(M, \mu_{m,n})$ (or $(M, \mu_{m,n})$ includes $(M, \lambda_{m,n})$), written as $(M, \lambda_{m,n}) \subseteq (M, \mu_{m,n})$ (or $(M, \mu_{m,n}) \supseteq (M, \lambda_{m,n})$), if

 $s_{k,\ell} \to \sigma(M,\,\lambda_{m,n})$ implies that $s_{k,\ell} \to \sigma(M,\,\mu_{m,n})$ too.

Centre for Info Bio Technology (CIBTech)

Research Article

The methods $(M, \lambda_{m,n})$, $(M, \mu_{m,n})$ are said to be "equivalent", if $(M, \lambda_{m,n}) \subseteq (M, \mu_{m,n})$ and vice versa. It is easy to prove the following result.

Theorem 3.1: Natarajan (2014) The method (M, $\lambda_{m,n}$) is regular if and only if

(3.1) $\sum_{m,n=0}^{\infty,\infty} \lambda_{m,n} = 1.$

Analogous to Theorem 1 of Natarajan (1978), we have the following result in the context of double sequences.

Theorem 3.2: Natarajan and Sakthivel (2008) If $\lim_{m \neq n \to \infty} a_{m,n} = 0$ and $\lim_{m \neq n \to \infty} b_{m,n} = 0$, then,

 $\lim_{m+n\to\infty} c_{m,n} = 0,$
where,

$$c_{_{m,n}} = \sum_{_{k,\ell=0}^{m,n}}^{_{m,n}} a_{_{m-k,n-\ell}} b_{_{k,\ell}}, \quad m,n=0,1,2,....$$

Proof: Since $\lim_{m+n\to\infty} a_{m,n} = 0$, $\lim_{m+n\to\infty} b_{m,n} = 0$, there exists M > 0 such that

 $|a_{m,n}| < M, |b_{m,n}| < M, m, n = 0, 1, 2,$

Given $\varepsilon > 0$, choose positive integers M₁, N₁ such that

$$\left|a_{\scriptscriptstyle m,n}\right| \! < \! \frac{\epsilon}{M}, \left|b_{\scriptscriptstyle m,n}\right| \! < \! \frac{\epsilon}{M}, \quad m \! > \! M_{\scriptscriptstyle 1}, n \! > \! N_{\scriptscriptstyle 1}.$$

Since $\lim_{m+n\to\infty} a_{m-k,n-\ell} = 0$, for every fixed k, $\ell = 0, 1, 2, ...$, we can choose positive intergers $M_2 > M_1, N_2 > N_1$ such that for $m > M_2$, $n > N_2$,

$$\begin{split} \sup_{0 \le k \le M_1 \atop 0 \le \ell \le N_1} & \left| a_{m-k,n-\ell} \right| < \frac{\epsilon}{M}; \\ \sup_{0 \le k \le M_1 \atop N_1 + l \le \ell \le n} & \left| a_{m-k,n-\ell} \right| < \frac{\epsilon}{M}; \end{split}$$

and

$$\sup_{M_1+l\leq k\leq m\atop 0\leq\ell\leq N_1} \left|a_{m-k,n-\ell}\right| < \frac{\epsilon}{M}$$

Thus, for $m > M_2$, $n > N_2$,

$$\begin{aligned} \left| \mathbf{c}_{m,n} \right| &= \left| \sum_{k,\ell=0}^{m,n} \mathbf{a}_{m-k,n-\ell} \mathbf{b}_{k,\ell} \right| \\ &= \left| \sum_{\substack{0 \le k \le M_1 \\ 0 \le \ell \le N_1}} \mathbf{a}_{m-k,n-\ell} \mathbf{b}_{k,\ell} + \sum_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \mathbf{a}_{m-k,n-\ell} \mathbf{b}_{k,\ell} + \sum_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \mathbf{a}_{m-k,n-\ell} \mathbf{b}_{k,\ell} \right| \\ &\leq \max \left[\sup_{\substack{0 \le k \le M_1 \\ 0 \le \ell \le N_1}} \left| \mathbf{a}_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right|, \sup_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \left| \mathbf{a}_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right|, \sup_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \left| \mathbf{a}_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right|, \sup_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \left| \mathbf{a}_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right|, \sup_{\substack{0 \le k \le M_1 \\ \ell > N_1}} \left| \mathbf{a}_{m-k,n-\ell} \right| \left| \mathbf{b}_{k,\ell} \right| \right| \\ &\leq \max \left[\frac{\varepsilon}{M} \mathbf{M}, \frac{\varepsilon}{M} \mathbf{M}, \frac{\varepsilon}{M} \mathbf{M}, \frac{\varepsilon}{M} \mathbf{M} \right] \\ &= \varepsilon. \end{aligned}$$

In other words,

Centre for Info Bio Technology (CIBTech)

 $\lim_{m+n\to\infty}c_{m,n}=0,$

completing the proof of the theorem.

We now have the following results on the Cauchy multiplication of $(M, \lambda_{m,n})$ -summable double sequences and double series.

Theorem 3.3: If $\lim_{m+n\to\infty} a_{m,n} = 0$ and $\{b_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to B, then $\{c_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to AB, where,

$$c_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} b_{k,\ell}, \quad m,n = 0,1,2,...$$

and

$$\sum_{m,n=0}^{\infty,\infty} a_{m,n} = A.$$

Proof: We first note that $\lim_{m+n\to\infty} a_{m,n} = 0$ implies that $\sum_{m,n=0}^{\infty} a_{m,n}$ converges in view of Theorem 1.2. Let $\{t_{m,n}\}$, $\{\tau_{m,n}\}$ be the $(M, \lambda_{m,n})$ -transforms of $\{b_{m,n}\}$, $\{c_{m,n}\}$ respectively,

i.e.,
$$t_{m,n} = \sum_{k,\ell=0}^{m,n} \lambda_{m-k,n-\ell} b_{k,\ell}$$
,
 $\tau_{m,n} = \sum_{k,\ell=0}^{m,n} \lambda_{m-k,n-\ell} c_{k,\ell}$, $m, n = 0, 1, 2, ...$

We can work out to see that

(3.2)
$$\tau_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} (t_{k,\ell} - B) + B\left(\sum_{k,\ell=0}^{m,n} a_{k,\ell}\right), \quad m,n = 0,1,2,...,$$

where, $\lim_{k+\ell\to\infty} t_{k,\ell} = B$, by hypothesis. Since $\lim_{m+n\to\infty} a_{m,n} = 0$ and $\lim_{m+n\to\infty} (t_{m,n} - B) = 0$, using Theorem 3.2, we see that

$$\lim_{m+n\to\infty}\left[\sum_{k,\ell=0}^{m,n}a_{m-k,n-\ell}(t_{k,\ell}-B)\right]=0,$$

so that, taking limit as m+n $\rightarrow \infty$ in (3.2), we have,

$$\lim_{m+n\to\infty} \tau_{m,n} = B\left(\sum_{k,\ell=0}^{\infty\infty} a_{k,\ell}\right)$$
$$= AB,$$

i.e., $\{c_{m,n}\}$ is $(M, \lambda_{m,n})$ -summable to AB, completing the proof of the theorem. It is now easy to prove the following result on similar lines.

Theorem 3.4: If $\lim_{m+n\to\infty} a_{m,n} = 0$, $\sum_{m,n=0}^{\infty,\infty} b_{m,n}$ is $(M, \lambda_{m,n})$ -summable to B, then $\sum_{m,n=0}^{\infty,\infty} c_{m,n}$ is $(M, \lambda_{m,n})$ -summable to AB, where,

$$c_{m,n} = \sum_{k,\ell=0}^{m,n} a_{m-k,n-\ell} b_{k,\ell}, \quad m,n = 0,1,2,.$$

and

Centre for Info Bio Technology (CIBTech)

$$\sum_{m,n=0}^{\infty,\infty} a_{m,n} = A.$$

As in the case of the (M, λ_n) method for simple sequences (Natarajan, 2012), using Theorem 3.2 again, we can prove

Theorem 3.5: If
$$\sum_{m,n=0}^{\infty,\infty} a_{m,n}$$
 is $(M, \lambda_{m,n})$ -summable to A, $\sum_{m,n=0}^{\infty,\infty} b_{m,n}$ is $(M, \mu_{m,n})$ -summable to B, then $\sum_{m,n=0}^{\infty,\infty} c_{m,n}$

is (M, $\gamma_{m,n}$)-summable to AB, where,

$$\begin{split} c_{m,n} &= \sum_{k,\ell=0}^{mn} a_{m-k,n-\ell} b_{k,\ell} \,, \\ \gamma_{m,n} &= \sum_{k,\ell=0}^{m,n} \lambda_{m-k,n-\ell} \mu_{k,\ell} \,, \quad m,n=0,1,2,... \end{split}$$

Again as in the case of the Natarajan method (M, λ_n) for simple sequences (Natarajan, 2013), we can prove the following result, using Theorem 3.2.

Theorem 3.6: Let $(M, \lambda_{m,n})$, $(M, \mu_{m,n})$ be regular methods. Then, $(M, \lambda_{m,n})$ $(M, \mu_{m,n})$ is also regular, where, we define, for $x = \{x_{m,n}\}$,

 $((M,\,\lambda_{m,n})\;(M,\,\mu_{m,n}))(x)=(M,\,\lambda_{m,n})\;((M,\,\mu_{m,n}))(x)).$

We can prove the following results too.

Theorem 3.7: For given regular methods (M, $\lambda_{m,n}$), (M, $\mu_{m,n}$) and (M, $t_{m,n}$), let $|\lambda_{m,n}| < |\lambda_{0,0}|$, $|t_{m,n}| < |t_{0,0}|$, (m, n) \neq (0, 0), m, n = 0, 1, 2, Then

 $(\mathbf{M}, \lambda_{m,n}) \subseteq (\mathbf{M}, \mu_{m,n})$

if and only if

 $(\mathbf{M}, \mathbf{t}_{\mathbf{m},\mathbf{n}}) \ (\mathbf{M}, \lambda_{\mathbf{m},\mathbf{n}}) \subseteq (\mathbf{M}, \mathbf{t}_{\mathbf{m},\mathbf{n}}) \ (\mathbf{M}, \boldsymbol{\mu}_{\mathbf{m},\mathbf{n}}).$

In view of Theorem 3.6 of Natarajan (2014), we can reformulate Theorem 3.7 as follows:

Theorem 3.8: Given the regular methods (M, $\lambda_{m,n}$), (M, $\mu_{m,n}$) and (M, $t_{m,n}$), $|\lambda_{m,n}| < |\lambda_{0,0}|$, $|t_{m,n}| < |t_{0,0}|$, $(m, n) \neq (0, 0)$, m, n = 0, 1, 2, ..., the following statements are equivalent:

(i)
$$(\mathbf{M}, \lambda_{m,n}) \subseteq (\mathbf{M}, \mu_{m,n});$$

(ii) (M, $t_{m,n}$) (M, $\lambda_{m,n}$) \subseteq (M, $t_{m,n}$) (M, $\mu_{m,n}$); and

(iii)
$$\lim_{m+n\to\infty} k_{m,n} = 0$$
 and $\sum_{m,n=0}^{\infty,\infty} k_{m,n} = 1$,

where,

$$\begin{split} &\frac{\mu(x)}{\lambda(x)} = k(x) = \sum_{m,n=0}^{\infty} k_{m,n} x^m y^n, \\ &\lambda(x) = \sum_{m,n=0}^{\infty,\infty} \lambda_{m,n} x^m y^n; \end{split}$$

and

$$\mu(x) = \sum_{m,n=0}^{\infty,\infty} \mu_{m,n} x^m y^n.$$

REFERENCES

Natarajan PN (1978). Multiplication of series with terms in a non-archimedean field. *Simon Stevin* **52** 157-160.

Centre for Info Bio Technology (CIBTech)

Research Article

Natarajan PN and Srinivasan V (2002). Silverman-Toeplitz theorem for double sequences and series and its application to Nörlund means in non-archimedean fields. *Annales Mathématiques Blaise Pascal* **9** 85-100.

Natarajan PN and Sakthivel S (2008). Multiplication of double series and convolution of double infinite matrices in non-archimedean fields. *Indian Journal of Mathematics* **50** 115-123.

Natarajan PN (2012). Some properties of the (M, λ_n) method of summability in ultrametric fields. *International Journal of Physics and Mathematical Sciences* **2** 169-176.

Natarajan PN (2013). Cauchy multiplication of (M, λ_n) summable series in ultrametric fields. *International Journal of Physics and Mathematical Sciences* **3** 51-55.

Natarajan PN (2013). On the Natarajan method of summability in ultrametric fields. 5th Dr. George Bachman Memorial Conference Proceedings. *Indian Journal of Mathematics* 55(Supplement) 125-132.

Natarajan PN (2014). Natarajan summability method for double sequences and double series in ultrametric fields. *Advancement and Development in Mathematical Sciences* **6** 9-17.