ON HYPER SURFACE OF A FINSLER SPACE WITH AN EXPONENTIAL (α, β) - METRIC OF ORDER M

H.S. Shukla and *Neelam Mishra

Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, India *Author for Correspondence

ABSTRACT

The purpose of the present paper is to investigate the various kinds of hyper surfaces of a Finsler space with special (α , β)- metric $L = \sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^r}{\alpha^{(r-1)}}$.

Keywords: Special Finsler Hyper Surface, (α, β) -Metric, Normal Curvature Vector, Second Fundamental Tensor, Hyperplane of First Kind, Hyperplane of Second Kind, Hyperplane of Third Kind

INTRODUCTION

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space, i.e., a pair consisting of an n-dimensional differentiable manifold M^n equipped with a fundamental function L(x,y). The concept of the (α,β) -metric $L(\alpha,\beta)$ was introduce by Matsumoto (1991) and has been studied by many authors (Hashiguchi and Ichjyo, 1975; Kikuchi, 1979; Shibata, 1984).

A Finsler metric L(x,y) is called an (α,β) - metric $L(\alpha,\beta)$ if L is a positively homogeneous function of α and β of degree one, where $\alpha^2 = a_{ij}(x)y^iy^j$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M^n . A hypersurface M^{n-1} of the M^n may be represented parametrically by the equations $x^i = x^i(u^\alpha)$, $\alpha = 1,2,...,n-1$, where u^α are Gaussian coordinates on M^{n-1} . The following notations are also employed (Kitayama, 2002): $B^i_{\alpha\beta} = \partial^2 x^i / \partial u^\alpha \partial u^\beta$, $B^i_{0\beta} = v^\alpha B^i_{\alpha\beta}$. If the supporting element y^i at a point (u^α) of M^{n-1} is assumed to be tangential to M^{n-1} , we may then write $y^i = B^i_\alpha(u)v^\alpha$, so that v^α is thought of as the supporting element of M^{n-1} at the point (u^α) .

Since the function $\underline{L}(u, v) = L(x(u), y(u, v))$ gives rise to a Finsler metric of M^{n-1} , we get an (n-1)dimensional Finsler space $F^{n-1} = (M^{n-1}, \underline{L}(u, v))$.

In the present paper, we consider an n-dimensional Finsler space $F^n = (M^n, L)$ with (α, β) metric $L(\alpha, \beta) = L = \sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^r}{\alpha^{(r-1)}}$ and the hyper surface of F^n with $b_i(x) = \partial_i b$ being the gradient of a scalar function b(x). We prove the condition for this hyper surface to be a hyperplane of first kind, second kind and third kind.

Preliminaries

Let $F^n = (M^n, L)$ be a special Finsler space with the metric

(2.1)
$$L(\alpha,\beta) = \sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^r}{\alpha^{(r-1)}}$$

The derivatives of the (2.1) with respect to α and β are given by

$$\begin{split} L_{\alpha} &= \sum_{r=0}^{m} \frac{(1-r)}{r!} \frac{\beta^{r}}{\alpha^{r}}, \\ L_{\beta} &= \sum_{r=0}^{m} \frac{1}{(r-1)!} \frac{\beta^{r}}{\alpha^{(r-1)}}, \\ L_{\alpha\alpha} &= \sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{r}}{\alpha^{(r+1)}}, \\ L_{\beta\beta} &= \sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{(r-2)}}{\alpha^{(r-1)}}, \\ L_{\alpha\beta} &= -\sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{(r-1)}}{\alpha^{r}}, \end{split}$$

Centre for Info Bio Technology (CIBTech)

Where $L_{\alpha} = \frac{\partial L}{\partial \alpha}$, $L_{\beta} = \frac{\partial L}{\partial \beta}$, $L_{\alpha\beta} = \frac{\partial L_{\alpha}}{\partial \beta}$, $L_{\alpha\alpha} = \frac{\partial L_{\alpha}}{\partial \alpha}$, $L_{\beta\beta} = \frac{\partial L_{\beta}}{\partial \beta}$ and $L_{\alpha\beta} = \frac{\partial L_{\alpha}}{\partial \beta}$

In the special Finsler space $F^n = (M^n, L)$ the normalized element of support $l_i = \dot{\partial}_i L$ and the angular metric tensor h_{ij} are given by Matsumoto, (1991):

$$l_{i} = \alpha^{-1}L_{\alpha}Y_{i} + L_{\beta}b_{i},$$

$$h_{ij} = pa_{ij} + q_{0}b_{i}b_{j} + q_{-1}(b_{i}Y_{j} + b_{j}Y_{i}) + q_{-2}Y_{i}Y_{j},$$

where $Y_{i} = a_{ij}y^{j}$ For the fundamental function (2.1) above scalars are given by

$$(1-t) e^{(r+t)}$$

$$(2.2) p = LL_{\alpha}\alpha^{-1} = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(1-t)}{r!t!} \frac{\beta^{(r+t)}}{\alpha^{(r+t-1)}} ,$$

$$q_{0} = LL_{\beta\beta} = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{1}{r!(t-2)!} \frac{\beta^{(r+t-2)}}{\alpha^{(r+t-2)}} ,$$

$$q_{-1} = LL_{\alpha\beta}\alpha^{-1} = -\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{1}{r!(t-2)!} \frac{\beta^{(r+t-1)}}{\alpha^{(r+t)}} ,$$

$$q_{-2} = L\alpha^{-2}(L_{\alpha\alpha} - L_{\alpha}\alpha^{-1}) = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{r^{2}-1}{r!t!} \frac{\beta^{(r+t)}}{\alpha^{(r+t+2)}} .$$

The Fundamental metric tensor $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$ and its reciprocal tensor g^{ij} is given by Matsumoto, (1991) (2.3) $g_{ij} = pa_{ij} + p_0 b_i b_j + p_{-1} (b_i Y_j + b_j Y_i) + p_{-2} Y_i Y_j$, where

$$(2.4) \quad p_{0} = q_{0} + L_{\beta}^{2} = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(r+t-1)\beta^{(r+t-2)}}{r!(t-1)!\alpha^{(r+t-2)}} ,$$

$$p_{-1} = q_{-1} + L^{-1}pL_{\beta} = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(2-r-t)\beta^{(r+t-1)}}{r!(t-1)!\alpha^{(r+t)}} ,$$

$$p_{-2} = q_{-2} + p^{2}L^{-2} = \sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(r-1)(r+t)\beta^{(r+t)}}{r!t!\alpha^{(r+t+2)}}.$$

The reciprocal tensor g^{ij} of g_{ij} is given by $(2.5)g^{ij} = p^{-1}a^{ij} - s_0b^ib^j - s_{-1}(b^iy^j + b^jy^i) - s_{-2}y^iy^j,$

where

where
$$b^{i} = a^{ij}b_{j}, b^{2} = a_{ij}b^{i}b^{j}$$
 and
 $(2.6)s_{0} = \frac{1}{\tau p} \{pp_{0} + (p_{0}p_{-2} - p_{-1}^{2})\alpha^{2}\},$
 $s_{-1} = \frac{1}{\tau p} \{pp_{-1} + (p_{0}p_{-2} - p_{-1}^{2})\beta\},$
 $s_{-2} = \frac{1}{\tau p} \{pp_{-2} + (p_{0}p_{-2} - p_{-1}^{2})b^{2}\},$
 $\tau = p(p + p_{0}b^{2} + p_{-1}\beta) + (p_{0}p_{-2} - p_{-1}^{2})(\alpha^{2}b^{2} - \beta^{2})$
The hv- torsion tensor $C_{ijk} = \frac{1}{2}\dot{\partial}_{k}g_{ij}$ is given by Matsumoto, (1991)
(2.7) $2pC_{ijk} = p_{-1}(h_{ij}m_{k} + h_{jk}m_{i} + h_{ki}m_{j}) + \gamma_{1}m_{i}m_{j}m_{k}$

where

(2.8)
$$\gamma_1 = \frac{\partial p_0}{\partial \beta} - 3p_{-1}q_0, \qquad m_i = b_i - \alpha^{-2}\beta Y_i.$$

Here m_i is a non-vanishing covariant vector orthogonal to the element of support y^i . Let $\{{}^{l}_{ik}\}$ be the components of Christoffel symbols of the associated Riemmanian space \mathbb{R}^{n} and ∇_{k} be the covariant derivative with respect to x^k relative to these Christoffel symbols. Now we define $(2.9)2E_{ij} = b_{ij} + b_{ji}$, $2F_{ii} = b_{ii} - b_{ii}$ where $b_{ij} = \nabla_j b_i$.

Centre for Info Bio Technology (CIBTech)

Let $C\Gamma = (\Gamma_{jk}^{*i}, \Gamma_{0k}^{*i}, C_{jk}^{i})$ be the Cartan connection of F^{n} . The difference tensor $D_{jk}^{i} = \Gamma_{jk}^{*i} - \{\frac{i}{jk}\}$ of the special Finsler space F^{n} is given by Matsumoto, (1986).

(2.10)
$$D_{jk} = B^{i}E_{jk} + F_{k}^{i}B_{j} + F_{j}^{i}B_{k} + B_{j}^{i}b_{0k} + B_{k}^{i}b_{0j} - b_{0m}g^{im}B_{jk}$$
$$-C_{jm}^{i}A_{k}^{m} - C_{km}^{i}A_{j}^{m} + C_{jkm}A_{s}^{m}g^{is}$$
$$+\lambda^{s} (C_{im}^{i}C_{sk}^{m} + C_{km}^{i}C_{si}^{m} - C_{mk}^{m}C_{ms}^{i}),$$

where

$$(2.11) \quad B_{k} = p_{0}b_{k} + p_{-1}Y_{k}, \quad B^{i} = g^{ij}B_{j}, \quad F_{i}^{k} = g^{kj}F_{ji}$$

$$B_{ij} = \frac{1}{2} \{ p_{-1}(a_{ij} - \alpha^{-2}Y_{i}Y_{j}) + \frac{\partial p_{0}}{\partial \beta}m_{i}m_{j} \}, \quad B_{i}^{k} = g^{kj}B_{ji},$$

$$A_{k}^{m} = B_{k}^{m}E_{00} + B^{m}E_{k0} + B_{k}F_{0}^{m} + B_{0}F_{k}^{m},$$

$$\lambda^{m} = B^{m}E_{00} + 2B_{0}F_{0}^{m}, \quad B_{0} = B_{i}y^{i}.$$

where '0' denotes contraction with y^i except for the quantities p_{0, q_0} and s_0 . Induced Cartan Connection

Let F^{n-1} be a hyper surface of F^n given by the equations $x^i = x^i(u^{\alpha})$

Where $\alpha = 1,2,3....(n-1)$. The (n-1) tangent vectors to the hyper surface F^{n-1} are given by $B^i_{\alpha} = \frac{\partial x^i}{\partial u^{\alpha}}$. The element of support y^i of F^n is to be taken tangential to F^{n-1} , that is Matsumoto, (1985), (3.1) $y^i = B^i_{\alpha}(u)v^{\alpha}$

The metric tensor $g_{\alpha\beta}$ and hv-tensor $C_{\alpha\beta\gamma}$ of F^{n-1} are given by

$$g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}$$
, $C_{\alpha\beta\gamma} = C_{ijk}B^i_{\alpha}B^j_{\beta}B^k_{\gamma}$
At each point (u^{α}) of F^{n-1} , a unit normal vector $N^i(u, v)$ is defined by

 $g_{ij}\{x(u,v), y(u,v)\}B^i_{\alpha}N^j = 0$, $g_{ij}\{x(u,v), y(u,v)\}N^iN^j = 1$. Angular metric tensor $h_{\alpha\beta}$ of the hyper surface is such that

(3.2) $h_{\alpha\beta} = h_{ij}B^i_{\alpha}B^j_{\beta}$, $h_{ij}B^i_{\alpha}N^j = 0$, $h_{ij}N^iN^j = 1$ If (B^{α}_i, N_i) denote the inverse of (B^i_{α}, N^i) , then we have

$$\begin{array}{ll} B^{\alpha}_{i} = g^{\alpha\beta}g_{ij}B^{j}_{\beta} \ , & B^{i}_{\alpha}B^{\beta}_{i} = \delta^{\beta}_{\alpha} \ , & B^{\alpha}_{i}N^{i} = 0, \quad B^{i}_{\alpha}N_{i} = 0, \\ N_{i} = g_{ij}N^{j}, & B^{K}_{i} = g^{kj}B_{ji} \ , & B^{i}_{\alpha}B^{\alpha}_{j} + N^{i}N_{j} = \delta^{i}_{j} \ . \end{array}$$

The induced connection $IC\Gamma = (\Gamma_{\beta\gamma}^{*\alpha}, G_{\beta}^{\alpha}, C_{\beta\gamma}^{\alpha})$ of F^{n-1} induced from the Cartan's connection $C\Gamma = (\Gamma_{ik}^{*i}, \Gamma_{0k}^{*i}, C_{ik}^{*i})$ is given by Matsumoto, (1985)

$$\Gamma_{\beta\gamma}^{*\alpha} = B_i^{\alpha} \left(B_{\beta\gamma}^i + \Gamma_{jk}^{*i} B_{\beta}^j B_{\gamma}^k \right) + M_{\beta}^{\alpha} H_{\gamma}$$

$$\begin{split} G^{\alpha}_{\beta} &= B^{\alpha}_{i} \left(B^{i}_{0\beta} + \Gamma^{*i}_{0j} B^{j}_{\beta} \right), C^{\alpha}_{\beta\gamma} = B^{\alpha}_{i} C^{i}_{jk} B^{j}_{\beta} B^{k}_{\gamma} ,\\ \text{where} \quad M_{\beta\gamma} &= N_{i} C^{i}_{jk} B^{j}_{\beta} B^{k}_{\gamma} , \quad M^{\alpha}_{\beta} = g^{\alpha\gamma} M_{\beta\gamma} , \quad H_{\beta} = N_{i} \left(B^{i}_{0\beta} + \Gamma^{*i}_{0j} B^{j}_{\beta} \right),\\ \text{and} B^{i}_{\beta\gamma} &= \frac{\partial B^{i}_{\beta}}{\partial u^{\gamma}} , \qquad B^{i}_{0\beta} = B^{i}_{\alpha\beta} v^{\alpha} . \end{split}$$

The quantities $M_{\beta\gamma}$ and H_{β} are called the second fundamental v-vector and normal curvature vector respectively (Matsumoto, 1985). The second fundamental h-tensor $H_{\beta\gamma}$ is defined as Matsumoto, (1985).

(3.3)
$$H_{\beta\gamma} = N_i \left(B_{\beta\gamma}^i + \Gamma_{jk}^{*i} B_{\beta}^J B_{\gamma}^k \right) + M_{\beta} H_{\gamma}$$

where

$$(3.4) M_{\beta} = N_i C^i_{ik} B^j_{\beta} N^k$$

The relative h- and v- covariant derivatives of projection factor B^i_{α} with respect to $IC\Gamma$ are given by (3.5) $B^i_{\alpha|\beta} = H_{\alpha\beta}N^i$, $B^i_{\alpha|\beta} = M_{\alpha\beta}N^i$

Research Article

The equation (3.3) shows that $H_{\beta\gamma}$ is generally not symmetric and

The above equations yield

(3.7) $H_{0\gamma} = H_{\gamma}$, $H_{\gamma 0} = H_{\gamma} + M_{\gamma} H_0$

We shall use following lemmas which are due to Matsumoto (1985):

Lemma 1: The normal curvature $H_0 = H_\beta v^\beta$ vanishes if and only if the normal curvature vector H_β vanishes.

Lemma 2: A hyper surface F^{n-1} is a hyperplane of the first kind with respect to connection $C\Gamma$ if and only if $H_{\alpha} = 0$.

Lemma 3: A hyper surface F^{n-1} is a hyperplane of the second kind with respect to connection $C\Gamma$ if and only if $H_{\alpha} = 0$ and $Q_{\alpha\beta} = 0$ where $Q_{\alpha\beta} = C_{ijk|0}B^{i}_{\alpha}B^{j}_{\beta}N^{k}$ and then $H_{\alpha\beta} = 0$

Lemma 4: A hyper surface F^{n-1} is a hyperplane of the third kind with respect to connection $C\Gamma$ if and only if $H_{\alpha} = 0H_{\alpha\beta} = 0$ and $M_{\alpha\beta} = 0$.

Hypersurface $F^{n-1}(c)$ of the Special Finsler Space

Let us consider a Finsler space with the metric $L = L = \sum_{r=0}^{m} \frac{1}{r! \alpha^{(r-1)}}$, with a gradient $b_i(x) = \frac{\partial b}{\partial x^i}$ for ascalar function b(x) and a hypersurface $F^{n-1}(c)$ given by the equation b(x) = c (constant) (Lee *et al.*, 2001).

From the parametric equation $x^i = x^i(u^{\alpha})$ of $F^{n-1}(c)$, we get $\frac{\partial b(x)}{\partial u^{\alpha}} = 0 = b_i B_{\alpha}^i$,

So, that $b_i(x)$ are regarded as covariant components of a normal vector field of hypersurface $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$, we have

(4.1)
$$b_i B_{\alpha}^i = 0$$
 and $b_i y^i = 0$ i.e. $\beta = 0$

The induced metric L(u,v) of $F^{n-1}(c)$ is given by

(4.2)
$$L(u,v) = a_{\alpha\beta}v^{\alpha}v^{\beta}$$
, $a_{\alpha\beta} = a_{ij}B^{i}_{\alpha}B^{j}_{\beta}$
At a point of $F^{n-1}(c)$, from equations (2.2), (2.3) and (2.5) we get

$$\begin{array}{ll} (4.3)p = 1 & q_0 = 1 \,, \ q_{-1} = 0 \,, \ q_{-2} = -\alpha^{-2} \\ p_0 = 2 & p_{-1} = \alpha^{-1}p_{-2} = 0 & \tau = (1+b^2), \\ s_0 = \frac{1}{(1+b^2)}s_{-1} = \frac{1}{\alpha(1+b^2)}s_{-2} = \frac{1}{\alpha^2(1+b^2)} \,. \end{array}$$

Therefore, from (4.2) we get,

(4.4)
$$g^{ij} = a^{ij} - \frac{1}{(1+b^2)} b^i b^j - \frac{1}{\alpha(1+b^2)} \left(b^i y^j + b^j y^i \right) + \frac{1}{\alpha^2(1+b^2)} y^i y^j$$

Thus along $E^{n-1}(c)$ (4.4) and (4.1) had to

Thus, along $F^{n-1}(c)$, (4.4) and (4.1) lead to

$$g^{ij}b_ib_j = \frac{b^2}{(1+b^2)}$$

Therefore, we get

$$(4.5) b_i(x(u)) = \sqrt{\frac{b^2}{(1+b^2)}} N_i , b^2 = a^{ij} b_i b_j$$

where *b* is the length of the vector b^{i} . Again from (4.4) and (4.5), we get

(4.6)
$$b^{i} = a^{ij}b_{j} = \sqrt{b^{2}(1+b^{2})}N^{i} + \frac{b^{2}}{\alpha}y^{i}$$

Thus, we have

Theorem 4.1 In a special Finsler hypersurface $F^{n-1}(c)$, the induced metric is a Riemannian metric given by (4.2) and the scalar function b(x) is given by (4.5) and (4.6)

The angular metric tensor h_{ij} and metric tensor g_{ij} of F^n are given by

$$(4.7)h_{ij} = a_{ij} + b_i b_j - \frac{1}{\alpha^2} Y_i Y_j ,$$

$$g_{ij} = a_{ij} + 2b_i b_j + \frac{1}{\alpha} (b_i Y_j + b_j Y_i) .$$

Centre for Info Bio Technology (CIBTech)

Research Article

From equations (4.1), (4.7) and (3.2) it follows that if $h_{\alpha\beta}^{(a)}$ denotes the angular metric tensor corresponding to the Riemannian metric tensor $a_{ij}(x)$, then we have along $F^{n-1}(c)$, $h_{\alpha\beta} = h_{\alpha\beta}^{(a)}$ Thus, along $F^{n-1}(c)$, From (2.3) we get, $\frac{\partial p_0}{\partial \beta} = \frac{4}{\alpha}$ and therefore, (2.8) give $\gamma_1 = \frac{1}{\alpha}$, $m_i = b_i$, At the points of $F^{n-1}(c)$, the hv-torsion tensor becomes (4.8) $C_{ijk} = \frac{1}{2\alpha} (h_{ij}b_k + h_{jk}b_i + h_{ki}b_j) + \frac{1}{2\alpha}b_ib_jb_k$ Therefore, from (3.2),(3.3),(3.5),(4.1) and (4.8), we have $(4.9)M_{\alpha\beta} = \frac{1}{2\alpha}\sqrt{\frac{b^2}{(1+b^2)}}h_{\alpha\beta}$ and $M_{\alpha} = 0$. Thus, from equation (3.6) it follows that $H_{\alpha\beta}$ is symmetric. Hence we have **Theorem 4.2:** The second fundamental v-tensor of the special Finsler hyper surface $F^{n-1}(c)$ is given by (4.9) the second fundamental h-tensor $H_{\alpha\beta}$ is symmetric. From $b_i B^i_{\alpha} = 0$, we have $b_{\alpha|\beta}B^i_{\alpha} + b_i B^i_{\alpha|\beta} = 0$ Therefore, from (3.5) and using $b_{i|\beta} = b_{i|i}B_{\beta}^{i} + b_{i|j}N^{j}H_{\beta}$ (Matsumoto, 1985) we have (4.10) $b_{i|j}B^{i}_{\alpha}B^{j}_{\beta} + b_{i}|_{j}B^{i}_{\alpha}N^{j}H_{\beta} + b_{i}H_{\alpha\beta}N^{i} = 0.$ Since $b_{i}|_{j} = -b_{h}C^{h}_{ij}$ and $M_{\alpha} = 0$, therefore $b_i|_j B^i_\beta N^j = 0$ Then, from equation (4.10) we have $(4.11)\sqrt{\frac{b^2}{(1+b^2)}}H_{\alpha\beta} + b_{i|j}B^i_{\alpha}B^j_{\beta} = 0.$

Now contracting (4.11) with v^{β} and using (3.1)and(3.6)we get

$$(4.12)\sqrt{\frac{b^2}{(1+b^2)}}H_{\alpha} + b_{i|j}B_{\alpha}^i y^j = 0$$

Again contracting equation (4.12) by v^{α} and using (3.1) we have

(4.13)
$$\sqrt{\frac{b^2}{(1+b^2)}}H_0 + b_{i|j}y^iy^j = 0.$$

From lemma (3.1) and (3.2), it is clear that the hypersurface $F^{n-1}(c)$ is a hyperplane of first kind if and only if $H_0 = 0$. Thus, from (4.13) it is obvious that $F^{n-1}(c)$ is a hyperplane of first kind if and only if $b_{i|j}y^iy^j = 0$. This $b_{i|j}$ being the covariant derivative with respect to $C\Gamma$ of F^n depends on y^i , but $b_{ij} = \nabla_j b_i$ is the covariant derivative with respect to Riemannian connection $\{i \\ ik\}$ constructed from $a_{ij}(x)$. Hence, b_{ij} does not depend on y^i . We shall consider the difference $b_{i|j} - b_{ij}$. The difference tensor $D_{jk}^{i} = \Gamma_{jk}^{*i} - {l \atop ik}$ is given by (2.10). Since b_{i} is a gradient vector, from (2.9) we have

$$E_{ij} = b_{ij}$$
 , $F_{ij} = 0$ and $F_j^i = 0$.
Thus, (2.10) reduces to

(4.14)
$$D_{jk}^{i} = B^{i}b_{jk} + B_{j}^{i}b_{0k} + B_{k}^{i}b_{0j} - b_{0m}g^{im}B_{jk} - C_{jm}^{i}A_{k}^{m} - C_{km}^{i}A_{j}^{m} + C_{jkm}A_{s}^{m}g^{is} + \lambda^{s}(C_{jm}^{i}C_{sk}^{m})$$

 $+C_{km}^i C_{si}^m - C_{ik}^m C_{ms}^i$). From (2.11) and (4.3) it follows that at $F^{n-1}(c)$, we have $B_i = 2b_i + \alpha^{-1}Y_i$, $B^i = \frac{1}{(1+b^2)}b^i + \frac{1}{\alpha(1+b^2)}y^i$, (4.15)

$$\begin{split} \lambda^m &= B^m b_{00} , B_{ij} = \frac{1}{2\alpha} (a_{ij} - \alpha^{-2} Y_i Y_j) + \frac{2}{\alpha} b_i b_j , \\ B^i_j &= \frac{1}{2\alpha} (\delta^i_j - \alpha^{-2} y^i Y_j) + \frac{3}{2\alpha(1+b^2)} b^i b_j - \frac{(1+4b^2)}{2\alpha^2(1+b^2)} y^i b_j . \\ A^m_k &= B^m_k b_{00} + B^m b_{k0} . \end{split}$$

From (4.15) we have $B_0^i = 0$, $B_{i0} = 0$ which leads to $A_0^m = B^m b_{00}$. Now contracting (4.14) by y^k we get

$$D_{j0}^{i} = B^{i}b_{j0} + B_{j}^{i}b_{00} - B^{m}C_{jm}^{i}b_{00}.$$

Again contracting the above equation with respect to y^{j} , we have

$$D_{00}^{i} = B^{i}b_{00} = \{ \frac{1}{(1+b^{2})}b^{i} + \frac{1}{\alpha(1+b^{2})}y^{i} \} \quad b_{00}$$

Paying attention to (4.1) along $F^{n-1}(c)$, we get

(4.16) $b_i D_{j0}^i = \frac{b^2}{(1+b^2)} b_{j0} + \frac{(1+4b^2)}{2\alpha(1+b^2)} b_j b_{00} - \frac{1}{(1+b^2)} b^m b_i C_{jm}^i b_{00}$ Now we contract (4.16) by y^j , we have

(4.17)
$$b_i D_{00}^i = \frac{b^2}{(1+b^2)} b_{00}.$$

From (3.3),(4.5),(4.9) and $M_{\alpha} = 0$,we

$$M_{\alpha} = 0$$
, we have
 $h^m h: C^i \quad B^j = h^2 M$

 $b^m \mathbf{b}_i C_{jm}^i B_{\alpha}^j = b^2 M_{\alpha} = 0$ Thus, the relation $b_{i|j} = b_{ij} - b_r D_{ij}^r$, after use of (4.17), gives

$$b_{i|j}y^iy^j = b_{00} - b_r D_{00}^r = \frac{1}{(1+b^2)}b_{00}$$
.

 $b_{i|j}y^{i}y^{j} = b_{00} - b_{r}D_{00}^{i}$ Consequently (4.12) and (4.13) may be written as

$$(4.18)\sqrt{\frac{b^2}{(1+b^2)}}H_{\alpha} + \frac{1}{(1+b^2)}b_{i0}B_{\alpha}^i = 0$$
$$\sqrt{\frac{b^2}{(1+b^2)}}H_0 + \frac{1}{(1+b^2)}b_{00} = 0$$

see We that the condition $H_0 = 0$ is respectively. equivalent to $b_{00} = 0$, where b_{ii} does not depend on yⁱ. Using the fact that $\beta = b_i y^i = 0$ on the $F^{n-1}(c)$, the condition $b_{00} = 0$ can be written as $b_{ij}y^iy^j = b_iy^ic_jy^j$ for some $c_j(x)$. Thus, we can write

(4.19)
$$2b_{ij} = b_i c_j + b_j c_i$$

Now from (4.1) and (4.19) we get

$$b_{00} = 0 , \quad b_{ij}B^{i}_{\alpha}B^{j}_{\beta} = 0 \ b_{ij}B^{i}_{\alpha}y^{j} = 0 .$$

Hence, from (4.18) we get $H_{\alpha} = 0$, Again from (4.19) and (4.15) we get
 $b_{i0}b^{i} = \frac{c_{0}b^{2}}{2} , \lambda^{m} = 0, A^{i}_{j}B^{j}_{\beta} = 0 \text{ and} B_{ij}B^{i}_{\alpha}B^{j}_{\beta} = \frac{1}{2\alpha}h_{\alpha\beta}$
Now we use equations (3.3),(4.4), (4.6),(4.9) and (4.14) to get
(4.20) $b_{r}D^{r}_{ij}B^{i}_{\alpha}B^{j}_{\beta} = \frac{-c_{0}b^{2}}{4\alpha(1+b^{2})^{2}}h_{\alpha\beta}$
Using (4.20) the equation (4.11) becomes

(4.21)
$$\sqrt{\frac{b^2}{1+b^2}}H_{\alpha\beta} + \frac{b^2}{4\alpha(1+b^2)^2}h_{\alpha\beta} = 0$$

Hence, the hyper surface $F^{n-1}(c)$ is umbilical.

Theorem 4.3: The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of first kind is that (4.21) holds good. Hence, the hyper surface $F^{n-1}(c)$ is umbilical. From (4.21) we see that the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor.

Now from lemma (3.3), $F^{n-1}(c)$ is a hyperplane of second kind if and only if $H_{\alpha} = 0$ and $Q_{\alpha\beta} = 0$ which implies that $H_{\alpha\beta} = 0$. Thus, from (4.21) we get

$$c_0 = c_i(x)y^i = 0$$

Research Article

Therefore, there exists a function $\psi(x)$ such that

$$c_i(x) = \psi(x)b_i(x)$$

Thus, equation (4.19) is written as

 $2b_{ij} = b_i(x)\psi(x)b_j(x) + b_j(x)\psi(x)b_i(x)$

or

 $(4.22) \ b_{ij} = \psi(x) \ b_i b_j$

Hence, we have

Theorem 4.4: The necessary and sufficient condition for a hypersurface $F^{n-1}(c)$ to be a hyperplane of second kind is that (4.22) holds good.

Next, lemma (3.4) together with (4.9) and $M_{\alpha} = 0$ shows that $F^{n-1}(c)$ can never become a hyperplane of the third kind. Hence, we have

Theorem 4.5: The hyper surface $F^{n-1}(c)$ can never become a hyperplane of the third kind.

REFERENCES

Hashiguchi M and Ichjyo Y (1975). On some special (α,β) - metrics. Reports of the Faculty of Science of Kagoshima University (Mathematics, Physics, Chemistry) 8 39-46.

Kikuchi S (1979). On the condition that a space with (α,β) - metric be locally Minkowskian, *Tensor, N.S.* 33 242-246.

Kitayama M (2002). On Finslerian hyper surfaces given by β – change. *Balkan Journal of Geometry and Its Applications* 7 49-55.

Lee IY, Park HY and Lee YD (2001). On a hyper surface of a special Finsler space with a metric $\alpha + \frac{\beta^2}{2}$. *Korean Journal of Mathematical Sciences* **8**(1) 93-101.

Matsumoto M (1985). The induced and intrinsic Finsler connection of a hyper surface and Finslerian projective geometry. *Journal of Mathematics of Kyoto University* 25 107-144.

Matsumoto M (1986). Foundations of Finsler Geometry and Special Finsler Spaces, (Kaiseisha Press, Saikawa, Otsu, Japan).

Matsumoto M (1991). Theory of Finsler spaces with (α,β) - metric, *Reports on Mathematical Physics* 30 15-20.

Randers G (1941). On an asymmetrical metric in the four-apace of general relativity. *Physical Review* 59(2) 195-199.

Shibata C (1984). On Finsler space with an (α,β) - metric. *Journal of Hokkaido University of Education IIA* 35(1984) 1-16.

Singh UP and Kumari B (2001). On a Matsumoto space. Indian Journal of Pure and Applied Mathematics 32 521-531.