ON HYPER SURFACE OF A FINSLER SPACE WITH AN EXPONENTIAL (α, β)- METRIC OF ORDER M

H.S. Shukla and *Neelam Mishra
Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, India
*Author for Correspondence

ABSTRACT

The purpose of the present paper is to investigate the various kinds of hyper surfaces of a Finsler space with special (α, β) - metric $L=\sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^{r}}{\alpha^{(r-1)}}$.

Keywords: Special Finsler Hyper Surface, (α, β)-Metric, Normal Curvature Vector, Second Fundamental Tensor, Hyperplane of First Kind, Hyperplane of Second Kind, Hyperplane of Third Kind

INTRODUCTION

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space, i.e., a pair consisting of an n -dimensional differentiable manifold M^{n} equipped with a fundamental function $L(x, y)$. The concept of the (α, β)metric $L(\alpha, \beta)$ was introduce by Matsumoto (1991) and has been studied by many authors (Hashiguchi and Ichjyo, 1975; Kikuchi, 1979; Shibata, 1984).
A Finsler metric $L(\mathrm{x}, \mathrm{y})$ is called an (α, β) - metric $L(\alpha, \beta)$ if L is a positively homogeneous function of α and β of degree one, where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M^{n}.
A hypersurface M^{n-1} of the M^{n} may be represented parametrically by the equations $x^{i}=x^{i}\left(u^{\alpha}\right)$, $\alpha=1,2, \ldots, n-1$, where u^{α} are Gaussian coordinates on M^{n-1}. The following notations are also employed (Kitayama, 2002): $B_{\alpha \beta}^{i}=\partial^{2} x^{i} / \partial u^{\alpha} \partial u^{\beta}, B_{0 \beta}^{i}=v^{\alpha} B_{\alpha \beta}^{i}$. If the supporting element y^{i} at a point $\left(u^{\alpha}\right)$ of M^{n-1} is assumed to be tangential to M^{n-1}, we may then write $y^{i}=B_{\alpha}^{i}(u) v^{\alpha}$, so that v^{α} is thought of as the supporting element of M^{n-1} at the point (u^{α}).
Since the function $\underline{L}(u, v)=L(x(u), y(u, v))$ gives rise to a Finsler metric of M^{n-1}, we get an ($\mathrm{n}-1$)dimensional Finsler space $F^{n-1}=\left(M^{n-1}, \underline{L}(u, v)\right)$.
In the present paper, we consider an n-dimentional Finsler space $F^{n}=\left(M^{n}, L\right)$ with (α, β) $\operatorname{metric} L(\alpha, \beta)=L=\sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^{r}}{\alpha^{(r-1)}}$ and the hyper surface of F^{n} with $b_{i}(x)=\partial_{i} b$ being the gradient of a scalar function $b(x)$. We prove the condition for this hyper surface to be a hyperplane of first kind, second kind and third kind.

Preliminaries

Let $F^{n}=\left(M^{n}, L\right)$ be a special Finsler space with the metric

$$
\begin{equation*}
L(\alpha, \beta)=\sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^{r}}{\alpha^{(r-1)}} \tag{2.1}
\end{equation*}
$$

The derivatives of the (2.1) with respect to α and β are given by

$$
\begin{gathered}
L_{\alpha}=\sum_{r=0}^{m} \frac{(1-r)}{r!} \frac{\beta^{r}}{\alpha^{r}}, L_{\beta}=\sum_{r=0}^{m} \frac{1}{(r-1)!} \frac{\beta^{(r-1)}}{\alpha^{(r-1)}}, \\
L_{\alpha \alpha}=\sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{r}}{\alpha^{(r+1)}}, L_{\beta \beta} \\
=\sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{(r-2)}}{\alpha^{(r-1)}}, \\
L_{\alpha \beta}=-\sum_{r=0}^{m} \frac{1}{(r-2)!} \frac{\beta^{(r-1)}}{\alpha^{r}},
\end{gathered}
$$

Research Article

Where $L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, L_{\alpha \beta}=\frac{\partial L_{\alpha}}{\partial \beta}, L_{\alpha \alpha}=\frac{\partial L_{\alpha}}{\partial \alpha}, L_{\beta \beta}=\frac{\partial L_{\beta}}{\partial \beta} \quad$ and $L_{\alpha \beta}=\frac{\partial L_{\alpha}}{\partial \beta}$
In the special Finsler space $F^{n}=\left(M^{n}, L\right)$ the normalized element of support $l_{i}=\dot{\partial}_{i} L$ and the angular metric tensor $h_{i j}$ are given by Matsumoto, (1991):
$l_{i}=\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i}$,
$h_{i j}=p a_{i j}+q_{0} b_{i} b_{j}+q_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{-2} Y_{i} Y_{j}$,
where $Y_{i}=a_{i j} y^{j}$ For the fundamental function (2.1) above scalars are given by

$$
\begin{gather*}
p=L L_{\alpha} \alpha^{-1}=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(1-t)}{r!t!} \frac{\beta^{(r+t)}}{\alpha^{(r+t-1)}}, \tag{2.2}\\
q_{0}=L L_{\beta \beta}=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{1}{r!(t-2)!\beta^{(r+t+2)}}, \\
q_{-1}=L L_{\alpha \beta} \alpha^{-1}=-\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{1}{r!(t-2)!} \frac{\beta^{(r+t-1)}}{\alpha^{(r+t)}} \\
q_{-2}=L \alpha^{-2}\left(L_{\alpha \alpha}-L_{\alpha} \alpha^{-1}\right)=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{r^{2}-1}{r!t!} \frac{\beta^{(r+t)}}{\alpha^{(r+t+2)}}
\end{gather*}
$$

The Fundamental metric tensor $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}$ and its reciprocal tensor $g^{i j}$ is given by Matsumoto, (1991) (2.3) $g_{i j}=p a_{i j}+p_{0} b_{i} b_{j}+p_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+p_{-2} Y_{i} Y_{j}$,
where

$$
\begin{align*}
& p_{0}=q_{0}+L_{\beta}^{2}=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(r+t-1)}{r!(t-1)!} \frac{\beta^{(r+t-2)}}{\alpha^{(r+t-2)}}, \tag{2.4}\\
& \quad p_{-1}=\mathrm{q}_{-1}+L^{-1} p L_{\beta}=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(2-r-t)}{r!(t-1)!} \frac{\beta^{(r+t-1)}}{\alpha^{(r+t)}}, \\
& p_{-2}=q_{-2}+p^{2} L^{-2}=\sum_{t=0}^{m} \sum_{r=0}^{m} \frac{(r-1)(r+t)}{r!t!} \frac{\beta^{(r+t)}}{\alpha^{(r+t+2)} .}
\end{align*}
$$

The reciprocal tensor $g^{i j}$ of $g_{i j}$ is given by
(2.5) $g^{i j}=p^{-1} a^{i j}-s_{0} b^{i} b^{j}-s_{-1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-s_{-2} y^{i} y^{j}$,
where $\quad b^{i}=a^{i j} b_{j}, b^{2}=a_{i j} b^{i} b^{j}$ and
(2.6) $s_{0}=\frac{1}{\tau p}\left\{p p_{0}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) \alpha^{2}\right\}$,
$s_{-1}=\frac{1}{\tau p}\left\{p p_{-1}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) \beta\right\}$,
$s_{-2}=\frac{1}{\tau p}\left\{p p_{-2}+\left(p_{0} p_{-2}-p_{-1}^{2}\right) b^{2}\right\}$,
$\tau=p\left(p+p_{0} b^{2}+p_{-1} \beta\right)+\left(p_{0} p_{-2}-p_{-1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)$
The hv- torsion tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is given by Matsumoto, (1991)

$$
\begin{equation*}
2 p C_{i j k}=p_{-1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=\frac{\partial p_{0}}{\partial \beta}-3 p_{-1} q_{0}, \quad m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \tag{2.8}
\end{equation*}
$$

Here m_{i} is a non- vanishing covariant vector orthogonal to the element of support y^{i}.
Let $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ be the components of Christoffel symbols of the associated Riemmanian space R^{n} and ∇_{k} be the covariant derivative with respect to x^{k} relative to these Christoffel symbols. Now we define

$$
(2.9) 2 E_{i j}=b_{i j}+b_{j i}, \quad 2 F_{i j}=b_{i j}-b_{j i}
$$

where $b_{i j}=\nabla_{j} b_{i}$.

Research Article

Let $C \Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ be the Cartan connection of F^{n}. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the special Finsler space F^{n} is given by Matsumoto, (1986).

$$
\begin{align*}
& D_{j k}=B^{i} E_{j k}+F_{k}^{i} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k} \tag{2.10}\\
& \quad-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \\
& \quad+\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right),
\end{align*}
$$

where

$$
\begin{align*}
B_{k}=p_{0} b_{k}+p_{-1} Y_{k} & , \quad B^{i}=g^{i j} B_{j}, \quad F_{i}^{k}=g^{k j} F_{j i} \tag{2.11}\\
B_{i j} & =\frac{1}{2}\left\{p_{-1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial p_{0}}{\partial \beta} m_{i} m_{j}\right\}, B_{i}^{k}=g^{k j} B_{j i} \\
A_{k}^{m} & =B_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m} \\
\lambda^{m} & =B^{m} E_{00}+2 B_{0} F_{0}^{m}, B_{0}=B_{i} y^{i}
\end{align*}
$$

where ' 0 ' denotes contraction with y^{i} except for the quantities p_{0}, q_{0} and s_{0}.
Induced Cartan Connection
Let F^{n-1} be a hyper surface of F^{n} given by the equations $x^{i}=x^{i}\left(u^{\alpha}\right)$
Where $\alpha=1,2,3 \ldots \ldots(n-1)$. The ($n-1$) tangent vectors to the hyper surface F^{n-1} are given by $B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}}$.
The element of support y^{i} of F^{n} is to be taken tangential to F^{n-1}, that is Matsumoto, (1985),
(3.1) $y^{i}=B_{\alpha}^{i}(u) v^{\alpha}$

The metric tensor $g_{\alpha \beta}$ and hv-tensor $C_{\alpha \beta \gamma}$ of F^{n-1} are given by

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad C_{\alpha \beta \gamma}=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k}
$$

At each point $\left(u^{\alpha}\right)$ of F^{n-1}, a unit normal vector $N^{i}(u, v)$ is defined by
$g_{i j}\{x(u, v), y(u, v)\} B_{\alpha}^{i} N^{j}=0, g_{i j}\{x(u, v), y(u, v)\} N^{i} N^{j}=1$.
Angular metric tensor $h_{\alpha \beta}$ of the hyper surface is such that
(3.2) $h_{\alpha \beta}=h_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad h_{i j} B_{\alpha}^{i} N^{j}=0, \quad h_{i j} N^{i} N^{j}=1$

If $\left(B_{i}^{\alpha}, N_{i}\right)$ denote the inverse of $\left(B_{\alpha}^{i}, N^{i}\right)$, then we have

$$
\begin{aligned}
& B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}, \quad B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, \quad B_{i}^{\alpha} N^{i}=0, \quad B_{\alpha}^{i} N_{i}=0, \\
& N_{i}=g_{i j} N^{j}, \quad B_{i}^{K}=g^{k j} B_{j i}, \quad B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i} .
\end{aligned}
$$

The induced connection $I C \Gamma=\left(\Gamma_{\beta \gamma}^{* \alpha}, G_{\beta}^{\alpha}, C_{\beta \gamma}^{\alpha}\right)$ of F^{n-1} induced from the Cartan's connection $C \Gamma=$ $\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{* i}\right)$ is given by Matsumoto, (1985)

$$
\Gamma_{\beta \gamma}^{* \alpha}=B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma}
$$

$G_{\beta}^{\alpha}=B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right), C_{\beta \gamma}^{\alpha}=B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}$,
where $\quad M_{\beta \gamma}=N_{i} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}, \quad M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma}, \quad H_{\beta}=N_{i}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right)$,
$\operatorname{and} B_{\beta \gamma}^{i}=\frac{\partial B_{\beta}^{i}}{\partial u^{\gamma}}, \quad B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha}$.
The quantities $M_{\beta \gamma}$ and H_{β} are called the second fundamental v- vector and normal curvature vector respectively (Matsumoto, 1985). The second fundamental h-tensor $H_{\beta \gamma}$ is defined as Matsumoto, (1985).

$$
\begin{equation*}
H_{\beta \gamma}=N_{i}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma} \tag{3.3}
\end{equation*}
$$

where
(3.4) $M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k}$

The relative h - and v - covariant derivatives of projection factor B_{α}^{i} with respect to $I C \Gamma$ are given by

$$
\begin{equation*}
B_{\alpha \mid \beta}^{i}=H_{\alpha \beta} N^{i},\left.\quad B_{\alpha}^{i}\right|_{\beta}=M_{\alpha \beta} N^{i} \tag{3.5}
\end{equation*}
$$

Research Article

The equation (3.3) shows that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\beta \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} \tag{3.6}
\end{equation*}
$$

The above equations yield
(3.7) $H_{0 \gamma}=H_{\gamma}, H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0}$

We shall use following lemmas which are due to Matsumoto (1985):
Lemma 1: The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.
Lemma 2: A hyper surface F^{n-1} is a hyperplane of the first kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$.
Lemma 3: A hyper surface F^{n-1} is a hyperplane of the second kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $Q_{\alpha \beta}=0$ where $Q_{\alpha \beta}=C_{i j k \mid 0} B_{\alpha}^{i} B_{\beta}^{j} N^{k}$ and then $H_{\alpha \beta}=0$
Lemma 4: A hyper surface F^{n-1} is a hyperplane of the third kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0 H_{\alpha \beta}=0$ and $M_{\alpha \beta}=0$.

Hypersurface $\boldsymbol{F}^{\boldsymbol{n - 1}}(\mathrm{c})$ of the Special Finsler Space

Let us consider a Finsler space with the metric $L=L=\sum_{r=0}^{m} \frac{1}{r!} \frac{\beta^{r}}{\alpha^{(r-1)}}$, with a gradient $b_{i}(x)=\frac{\partial b}{\partial x^{i}}$ for ascalar function $\mathrm{b}(\mathrm{x})$ and a hypersurface $F^{n-1}(c)$ given by the equation $\mathrm{b}(\mathrm{x})=\mathrm{c}$ (constant) (Lee et al., 2001).

From the parametric equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$, we get $\frac{\partial b(x)}{\partial u^{\alpha}}=0=b_{i} B_{\alpha}^{i}$,
So, that $b_{i}(x)$ are regarded as covariant components of a normal vector field of hypersurface $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$, we have
(4.1) $b_{i} B_{\alpha}^{i}=0$ and $b_{i} y^{i}=0$ i.e. $\beta=0$

The induced metric $\mathrm{L}(\mathrm{u}, \mathrm{v})$ of $F^{n-1}(c)$ is given by

$$
\begin{equation*}
L(u, v)=a_{\alpha \beta} v^{\alpha} v^{\beta}, a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} \tag{4.2}
\end{equation*}
$$

At a point of $F^{n-1}(c)$, from equations (2.2), (2.3) and (2.5) we get
(4.3) $p=1 \quad q_{0}=1, q_{-1}=0, q_{-2}=-\alpha^{-2}$
$p_{0}=2 \quad p_{-1}=\alpha^{-1} p_{-2}=0 \quad \tau=\left(1+b^{2}\right)$,
$\mathrm{s}_{0}=\frac{1}{\left(1+\mathrm{b}^{2}\right)} \mathrm{s}_{-1}=\frac{1}{\alpha\left(1+\mathrm{b}^{2}\right)} \mathrm{s}_{-2}=\frac{1}{\mathrm{a}^{2}\left(1+\mathrm{b}^{2}\right)}$.
Therefore, from (4.2) we get,

$$
\begin{equation*}
g^{i j}=a^{i j}-\frac{1}{\left(1+b^{2}\right)} b^{i} b^{j}-\frac{1}{\alpha\left(1+b^{2}\right)}\left(b^{i} y^{j}+b^{j} y^{i}\right)+\frac{1}{\alpha^{2}\left(1+b^{2}\right)} y^{i} y^{j} \tag{4.4}
\end{equation*}
$$

Thus, along $F^{n-1}(c),(4.4)$ and (4.1) lead to

$$
g^{i j} b_{i} b_{j}=\frac{b^{2}}{\left(1+b^{2}\right)}
$$

Therefore, we get
(4.5) $b_{i}(x(u))=\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} N_{i}, b^{2}=a^{i j} b_{i} b_{j}$
where b is the length of the vector b^{i}.
Again from (4.4) and (4.5), we get

$$
\begin{equation*}
b^{i}=a^{i j} b_{j}=\sqrt{b^{2}\left(1+b^{2}\right)} N^{i}+\frac{b^{2}}{\alpha} y^{i} \tag{4.6}
\end{equation*}
$$

Thus, we have
Theorem 4.1 In a special Finsler hypersurface $F^{n-1}(c)$, the induced metric is a Riemannian metric given by (4.2) and the scalar function $b(x)$ is given by (4.5) and (4.6)
The angular metric tensor $h_{i j}$ and metric tensor $g_{i j}$ of F^{n} are given by
(4.7) $h_{i j}=a_{i j}+b_{i} b_{j}-\frac{1}{\alpha^{2}} Y_{i} Y_{j}$,
$g_{i j}=a_{i j}+2 b_{i} b_{j}+\frac{1}{\alpha}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)$.

Research Article

From equations (4.1), (4.7) and (3.2) it follows that if $h_{\alpha \beta}^{(a)}$ denotes the angular metric tensor corresponding to the Riemannian metric tensor $a_{i j}(x)$, then we have along $F^{n-1}(c), h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$ Thus, along $F^{n-1}(c)$, From (2.3) we get, $\frac{\partial p_{0}}{\partial \beta}=\frac{4}{\alpha}$ and therefore, (2.8) give
$\gamma_{1}=\frac{1}{\alpha} \quad, \quad m_{i}=b_{i}$,
At the points of $F^{n-1}(c)$, the hv-torsion tensor becomes

$$
\begin{equation*}
C_{i j k}=\frac{1}{2 \alpha}\left(h_{i j} b_{k}+h_{j k} b_{i}+h_{k i} b_{j}\right)+\frac{1}{2 \alpha} b_{i} b_{j} b_{k} \tag{4.8}
\end{equation*}
$$

Therefore, from (3.2),(3.3),(3.5),(4.1) and (4.8), we have

$$
(4.9) M_{\alpha \beta}=\frac{1}{2 \alpha} \sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} h_{\alpha \beta}
$$

and $M_{\alpha}=0$.
Thus, from equation (3.6) it follows that $H_{\alpha \beta}$ is symmetric. Hence we have
Theorem 4.2: The second fundamental v-tensor of the special Finsler hyper surface $F^{n-1}(c)$ is given by (4.9) the second fundamental h-tensor $H_{\alpha \beta}$ is symmetric.

From $b_{i} B_{\alpha}^{i}=0$, we have

$$
b_{\alpha \mid \beta} B_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0
$$

Therefore, from (3.5) and using $b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta}$ (Matsumoto, 1985) we have

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+\left.b_{i}\right|_{j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{i} H_{\alpha \beta} N^{i}=0 . \tag{4.10}
\end{equation*}
$$

Since $\left.b_{i}\right|_{\mathrm{j}}=-b_{h} C_{i j}^{h}$ and $M_{\alpha}=0$, therefore

$$
b_{i} \mid{ }_{j} i_{\beta}^{i} N^{j}=0
$$

Then, from equation (4.10) we have
(4.11) $\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} H_{\alpha \beta}+b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}=0$.

Now contracting (4.11) with v^{β} and using (3.1)and(3.6)we get
(4.12) $\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} H_{\alpha}+b_{i \mid j} B_{\alpha}^{i} y^{j}=0$.

Again contracting equation (4.12) by v^{α} and using (3.1) we have

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} H_{0}+b_{i \mid j} y^{i} y^{j}=0 . \tag{4.13}
\end{equation*}
$$

From lemma (3.1) and (3.2), it is clear that the hypersurface $F^{n-1}(c)$ is a hyperplane of first kind if and only if $H_{0}=0$. Thus, from (4.13) it is obvious that $F^{n-1}(c)$ is a hyperplane of first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$. This $b_{i \mid j}$ being the covariant derivative with respect to $C \Gamma$ of F^{n} depends on y^{i}, but $b_{i j}=\nabla_{j} b_{i}$ is the covariant derivative with respect to Riemannian connection $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ constructed from $a_{i j}(x)$. Hence, $b_{i j}$ does not depend on y^{i}. We shall consider the difference $b_{i \mid j}-b_{i j}$. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ is given by (2.10). Since b_{i} is a gradient vector, from (2.9) we have

$$
E_{i j}=b_{i j} \quad, \quad F_{i j}=0 \quad \text { and } \quad F_{j}^{i}=0
$$

Thus, (2.10) reduces to

$$
\begin{align*}
D_{j k}^{i} & =B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m} \tag{4.14}\\
& -C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s}+\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}\right.
\end{align*}
$$

$\left.+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right)$.
From (2.11) and (4.3) it follows that at $F^{n-1}(c)$, we have

$$
\begin{equation*}
B_{i}=2 b_{i}+\alpha^{-1} Y_{i}, B^{i}=\frac{1}{\left(1+b^{2}\right)} b^{i}+\frac{1}{\alpha\left(1+b^{2}\right)} y^{\mathrm{i}}, \tag{4.15}
\end{equation*}
$$

$$
\begin{gathered}
\lambda^{m}=B^{m} b_{00}, B_{i j}=\frac{1}{2 \alpha}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{2}{\alpha} b_{i} b_{j} \\
B_{j}^{i}=\frac{1}{2 \alpha}\left(\delta_{j}^{i}-\alpha^{-2} y^{i} Y_{j}\right)+\frac{3}{2 \alpha\left(1+b^{2}\right)} b^{i} b_{j}-\frac{\left(1+4 b^{2}\right)}{2 \alpha^{2}\left(1+b^{2}\right)} y^{i} \mathrm{~b}_{\mathrm{j}} \\
A_{k}^{m}=B_{k}^{m} b_{00}+B^{m} b_{k 0}
\end{gathered}
$$

From (4.15) we have $B_{0}^{i}=0, B_{i 0}=0$ which leads to $A_{0}^{m}=B^{m} b_{00}$.
Now contracting (4.14) by y^{k} we get

$$
D_{j 0}^{i}=B^{i} b_{j 0}+B_{j}^{i} b_{00}-B^{m} C_{j m}^{i} b_{00}
$$

Again contracting the above equation with respect to y^{j}, we have

$$
D_{00}^{i}=B^{i} b_{00}=\left\{\frac{1}{\left(1+b^{2}\right)} b^{i}+\frac{1}{\alpha\left(1+b^{2}\right)} y^{\mathrm{i}}\right\} \quad b_{00}
$$

Paying attention to (4.1) along $F^{n-1}(c)$, we get

$$
\begin{equation*}
b_{i} D_{j 0}^{i}=\frac{b^{2}}{\left(1+b^{2}\right)} b_{j 0}+\frac{\left(1+4 b^{2}\right)}{2 \alpha\left(1+b^{2}\right)} \mathrm{b}_{\mathrm{j}} b_{00}-\frac{1}{\left(1+b^{2}\right)} b^{m} \mathrm{~b}_{\mathrm{i}} C_{j m}^{i} b_{00} \tag{4.16}
\end{equation*}
$$

Now we contract (4.16) by y^{j}, we have

$$
\begin{equation*}
b_{i} D_{00}^{i}=\frac{b^{2}}{\left(1+b^{2}\right)} b_{00} \tag{4.17}
\end{equation*}
$$

From (3.3),(4.5),(4.9) and $M_{\alpha}=0$, we have

$$
b^{m} \mathrm{~b}_{\mathrm{i}} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0
$$

Thus, the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$, after use of (4.17), gives

$$
b_{i \mid j} y^{i} y^{j}=b_{00}-b_{r} D_{00}^{r}=\frac{1}{\left(1+b^{2}\right)} b_{00}
$$

Consequently (4.12) and (4.13) may be written as

$$
\begin{gather*}
\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} H_{\alpha}+\frac{1}{\left(1+b^{2}\right)} b_{i 0} B_{\alpha}^{i}=0 \tag{4.18}\\
\sqrt{\frac{b^{2}}{\left(1+b^{2}\right)}} H_{0}+\frac{1}{\left(1+b^{2}\right)} b_{00}=0
\end{gather*}
$$

respectively. We see that the condition $H_{0}=0$ is equivalent to $b_{00}=0$, where b_{ij} does not depend on y^{i}. Using the fact that $\beta=b_{i} y^{i}=0$ on the $F^{n-1}(c)$, the condition $b_{00}=0$ can be written as $b_{i j} y^{i} y^{j}=b_{i} y^{i} c_{j} y^{j}$ for some $c_{j}(x)$. Thus, we can write

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} \tag{4.19}
\end{equation*}
$$

Now from (4.1) and (4.19) we get

$$
\mathrm{b}_{00}=0, \quad \mathrm{~b}_{\mathrm{ij}} \mathrm{~B}_{\alpha}^{\mathrm{i}} \mathrm{~B}_{\beta}^{\mathrm{j}}=0 b_{i j} B_{\alpha}^{i} y^{j}=0 .
$$

Hence, from (4.18) we get $H_{\alpha}=0$, Again from (4.19) and (4.15) we get
$b_{i 0} b^{i}=\frac{c_{0} b^{2}}{2}, \lambda^{m}=0, A_{j}^{i} B_{\beta}^{j}=0 \operatorname{and} B_{i j} B_{\alpha}^{i} B_{\beta}^{j}=\frac{1}{2 \alpha} h_{\alpha \beta}$
Now we use equations (3.3),(4.4), (4.6),(4.9) and (4.14) to get
$(4.20) b_{r} D_{i j}^{r} B_{\alpha}^{i} B_{\beta}^{j}=\frac{-c_{0} b^{2}}{4 \alpha\left(1+b^{2}\right)^{2}} h_{\alpha \beta}$
Using (4.20) the equation (4.11) becomes

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{1+b^{2}}} H_{\alpha \beta}+\frac{b^{2}}{4 \alpha\left(1+b^{2}\right)^{2}} h_{\alpha \beta}=0 \tag{4.21}
\end{equation*}
$$

Hence, the hyper surface $F^{n-1}(c)$ is umbilical.
Theorem 4.3: The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of first kind is that (4.21) holds good. Hence, the hyper surface $F^{n-1}(c)$ is umbilical. From (4.21) we see that the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor.
Now from lemma (3.3), $F^{n-1}(c)$ is a hyperplane of second kind if and only if $H_{\alpha}=0$ and $Q_{\alpha \beta}=0$ which implies that $H_{\alpha \beta}=0$. Thus, from (4.21) we get

$$
c_{0}=c_{i}(x) y^{i}=0
$$

Research Article

Therefore, there exists a function $\psi(x)$ such that

$$
c_{i}(x)=\psi(x) b_{i}(x)
$$

Thus, equation (4.19) is written as

$$
2 b_{i j}=b_{i}(x) \psi(x) b_{j}(x)+b_{j}(x) \psi(x) b_{i}(x)
$$

or
(4.22) $b_{i j}=\psi(x) b_{i} b_{j}$

Hence, we have
Theorem 4.4: The necessary and sufficient condition for a hypersurface $F^{n-1}(c)$ to be a hyperplane of second kind is that (4.22) holds good.
Next, lemma (3.4) together with (4.9) and $M_{\alpha}=0$ shows that $F^{n-1}(c)$ can never become a hyperplane of the third kind. Hence, we have
Theorem 4.5: The hyper surface $F^{n-1}(c)$ can never become a hyperplane of the third kind.

REFERENCES

Hashiguchi M and Ichjyo Y (1975). On some special (α, β)- metrics. Reports of the Faculty of Science of Kagoshima University (Mathematics, Physics, Chemistry) 8 39-46.
Kikuchi S (1979). On the condition that a space with (α, β)- metric be locally Minkowskian, Tensor, N.S. 33 242-246.
Kitayama M (2002). On Finslerian hyper surfaces given by β - change. Balkan Journal of Geometry and Its Applications 7 49-55.
Lee IY, Park HY and Lee YD (2001). On a hyper surface of a special Finsler space with a metric $\alpha+$ $\frac{\beta^{2}}{\alpha}$. Korean Journal of Mathematical Sciences 8(1) 93-101.
Matsumoto M (1985). The induced and intrinsic Finsler connection of a hyper surface and Finslerian projective geometry. Journal of Mathematics of Kyoto University 25 107-144.
Matsumoto M (1986). Foundations of Finsler Geometry and Special Finsler Spaces, (Kaiseisha Press, Saikawa, Otsu, Japan).
Matsumoto M (1991). Theory of Finsler spaces with (α, β)- metric, Reports on Mathematical Physics 30 15-20.
Randers G (1941). On an asymmetrical metric in the four-apace of general relativity. Physical Review 59(2) 195-199.
Shibata C (1984). On Finsler space with an (α, β) - metric. Journal of Hokkaido University of Education IIA 35(1984) 1-16.
Singh UP and Kumari B (2001). On a Matsumoto space. Indian Journal of Pure and Applied Mathematics 32 521-531.

