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ABSTRACT 

Electron interaction near the critical temperature is viewed as a contributor to the establishment of the 

energy gap which of late is projected to be a harbinger to explaining microscopic mechanism behind High 

temperature superconductivity. This study investigated the effects of the number of planes of CuO2 on the 

thermodynamic properties of double Tl-O layered compounds: Tl2Ba2CaxCuyOz (Tl22XY) High 

temperature superconducting cuprates due to an interaction between a Cooper Pair and an electron. The 

energy of interaction at the critical temperature (Tc) was seen to increase with increase in the number of 

CuO2 planes. The specific heat per unit mass, Sommerfeld coefficient as well as the entropy per unit 

mass, decreased with an increase in the number of CuO2 planes. The peak Sommerfeld coefficient 

temperature (T’) was noted to be approximately 0.66Tc in all considered cases of Tl22XY.  
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INTRODUCTION 

The discovery of superconductivity (Onnes, 1911) and more so discovery of High Temperature 

Superconductivity (HTS) (Bednorz and Mueller, 1986), stimulated hopes that all social–economic sectors 

were set to positively improve the livelihood of mankind. Between 1986 and 1994, intensive experimental 

research aimed at increasing the critical temperature (TC) of the ceramic cuprate was done hence, more 

HTS materials were discovered. In this period, Y-Ba-Cu-O (Wu et al., 1987), Bi-Sr-Ca-Cu-O (Maeda et 

al., 1988), Tl-Ba-Ca-Cu-O (Sheng and Hermann, 1988) and Hg-Ba-Ca-Cu-O (Schilling et al., 1993) were 

discovered. So far, the highest ever achieved experimental TC among the HTS Cuprates is 134 K in 

HgBa2Ca2Cu3Ox at normal atmospheric pressure (Schilling et al., 1993) and 156 K under 2.5 × 1010Pa 

pressure in the same substance (Ihara et al., 1993). In August 2015 the highest experimental TC in HTS 

was found to be 203 K under pressures of 200 GPa in a non - cuprate Sulfur Hydride (H2S) (Drozdov et 

al., 2015).  

Superconductivity in Thallium (Tl) based cuprate was discovered by Sheng and Hermann (1988), 

exhibiting a TC of approximately 120 K. Thallium based HTS cuprate thin films are applied in making 

electronics and electrical power related devices. This is because Thallium based HTS cuprates system has 

high TC as well as more superconducting phases than others (Greenblatt et al., 1990). Hence, comparative 

studies on structural and physical properties of this series of phases might provide us more information on 

the mechanism of high Tc superconductivity (Khaskalam et al., 2000). Thallium based copper oxides are 

thermally unstable, as a result they are difficult to prepare as pure phases (Narain and Ruckenstein, 1989). 

Furthermore, thallium compounds are severely non-stoichiometric and contain a considerable 

concentration of structural defects, which significantly affects the physical properties. Thallium and its 

compounds are among the most toxic inorganic materials (Greenblatt et al., 1990), as a result a theoretical 

study of this compound is recommended. All of the Thallium based compounds can be described by the 

general formula, TlmA2Can-1CunO2n+m+2, where m=1 or 2; n=1–5; A = Ba (Barium) or Sr (Strontium). For 

convenience, the names of these compounds are abbreviated as 2223 for T12Ba2Ca2Cu3O10, where each 
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number denotes the number of T1, Ba(Sr), Ca and Cu ions per formula, respectively. The compounds 

with m=1 and m=2 are usually referred to as single (TlBa2CaxCuyOz (Tl12XY)) and double 

(Tl2Ba2CaxCuyOz (Tl22XY)) Tl-O layered compounds, respectively (Greenblatt et al., 1990). Table 1 

below shows the double Tl-O layered compounds showing the number of CuO2 planes as well as their TC. 

 

Table 1: Double Tl-O Layered Thallium Based HTS Cuprates 

Tl-Ba-Ca-Cu-O Shorthand Tc No. of CuO2 Planes 

Tl
2

Ba
2
CuO

6
 Tl2201 95 1 

Tl
2

Ba
2
CaCu

2
O

8
 Tl2212 105 2 

Tl
2

Ba
2
Ca

2
Cu

3
O

10
 Tl2223 125 3 

Adapted from Schrieffer and Brooks (2007) 

 

From the table 1 above, it is noted that in Tl22XY, the TC increases with an increase in the number of 

CuO2 planes. Superconductivity occurs predominantly in the CuO2 planes (Kuzemsky and Kuzemskaya, 

2002). Furthermore, interlayer and intra layer interactions in layered high-Tc Cuprates play an important 

role in the enhancement of Tc (Sigei, 2013). Transition temperature has been found to increase as the 

number of Cu–O layer increases to three in Bi–Sr–Ca–Cu–O and Hg–Ba–Ca–Cu–O compounds 

(Greenblatt et al., 1990). The conduction mechanism of HTS cuprates is a mirage (Cilento et al., 2014; 

Keimer et al., 2015; Salas et al., 2016), though there is a consensus on various properties of HTS cuprates 

i.e. the order parameter in HTS cuprates is of dx2−y2 symmetry (Annett et al., 1996; Szczesniak, 2012), 

more so pure dx2−y2 wave symmetry of the superconducting order in Tl2201 has been conclusively 

established (Tsuei et al., 1997); the HTS cuprate material are noted to be perovskite shaped, anisotropic 

with complex structures (Khare, 2003; Mourachkine, 2002; Saxena, 2010). Identifying the nature of the 

electron-boson coupling in HTS cuprates remains elusive (Iwasawa et al., 2013). The major challenge in 

discussing cuprate superconductors is lack of understanding the fundamental electronic correlation that 

leads to energy gap phenomenon (Cilento et al., 2014; Gor’kov and Teitel’baum, 2015). Clarifying the 

coupling between electrons and bosonic excitations that mediate the formation of Cooper pairs is pivotal 

to understand superconductivity (Iwasawa et al., 2013). This study determined the effect of the number of 

CuO2 planes on the thermodynamic properties of an interaction between an electron and a Cooper pair in 

double Tl-O layered compounds (Tl22XY).  

Theoretical Framework 

The order parameter of an interaction between Cooper pair and electron is given by equation (1)  

|Ψ〉 = ∏ (𝑢𝑘 + 𝑣𝑘𝑎𝑘
†𝑎−𝑘

† )

𝑛

𝑘,𝑞=1

𝑎𝑞
†|0〉                                                                                                    (1) 

From equation (1), Cooper pair in momentum state k, comprises of two electrons creation operators in 

state k, i.e. spin up 𝑎𝑘
†
, and spin down  𝑎−𝑘

†
. The independent electron in an excited state q is created by 𝑎𝑞

†
 

in a vacuum state  |0〉. Note that 𝑢𝑘 is the probability of a vacuum state |0〉 in momentum state k being 

unoccupied by the Cooper pair  𝑎𝑘
†𝑎−𝑘

†
 whereas, 𝑣𝑘 is the probability of a vacuum state |0〉 in momentum 

state k being occupied by the Cooper pair 𝑎𝑘
†𝑎−𝑘

†
. The Hamiltonian for the interaction between Cooper 

pair and an electron based on Froehlich equation is given as  

𝐻 = ∑ 𝜖𝑞

𝑞

𝑎𝑞
†𝑎𝑞 + ∑ 𝜖𝑘

𝑘

𝑎𝑘
†𝑎−𝑘

† 𝑎−𝑘𝑎𝑘 + ∑ 𝑉𝑘,𝑞

𝑘,𝑞

𝑎𝑞
†𝑎𝑞𝑎𝑘

†𝑎−𝑘
†

 

− ∑ 𝑉𝑘,𝑞

𝑘,𝑞

𝑎𝑞
†𝑎𝑞𝑎−𝑘𝑎𝑘 − ∑ 𝑈𝑘

𝑘,𝑞

𝑎𝑞
†𝑎𝑞𝑎𝑘

†𝑎−𝑘
† 𝑎−𝑘𝑎𝑘                                                                       (2) 
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From equation (2), 𝜖𝑞 and 𝜖𝑘 are the kinetic energies for an electron and Cooper pair respectively defined 

as 𝜖𝑞 =
ℏ2𝑘𝑒

2

2𝑚𝑒
 and 𝜖𝑘 =

ℏ2𝑘𝐶
2

2𝑚𝐶
 where subscripts e and C implies electron and Cooper pair respectively. 𝑉𝑘,𝑞 

is the positive interaction potential between the electron and the Cooper pair whereas 𝑈𝑘 is the negative 

Coulombs potential between the electron and the Cooper pair  

The average energy needed during the interaction is written as 

𝐸𝑘 = ⟨Ψ|𝐻|Ψ⟩                                                                                                                                        (3) 

Inserting equation (1) and its conjugate as well as equation (2) into equation (3) and obeying the anti-

commutation rule, the ground state energy 𝐸𝑘 is determined. The determined 𝐸𝑘 is multiplied by thermal 

activation factor (𝑒−𝐸𝑘 𝑘𝑇⁄ ) in order to relate it to temperature giving us equation (4) below 

𝐸𝑛 = 𝐸𝑘𝑒−𝐸𝑘 𝑘𝑇⁄                                                                                                                                     (4)    

The following are the conditions for determining specific heat (Cv), Sommerfeld coefficient (γ), entropy 

(S) and critical temperature (TC) of any given system 

𝐶𝑉 =
𝑑𝐸𝑛

𝑑𝑇
                                                                                                                                                (5) 

𝛾 =
𝐶𝑉

𝑇
                                                                                                                                                     (6) 

𝑆 = ∫ 𝐶𝑉

𝑑𝑇

𝑇
                                                                                                                                          (7) 

(
𝜕𝐶𝑉

𝜕𝑇
)

𝑇=𝑇𝐶

= 0                                                                                                                                      (8) 

Based on equations (4), (5), (6), (7) and (8), the expressions for specific heat (Cv), Sommerfeld 

coefficient (γ), entropy (S) and critical temperature (TC) was found to be 

𝐶𝑉 =
(𝐸𝑘)2

𝐾𝐵𝑇2
𝑒

−
𝐸𝑘

𝐾𝐵𝑇                                                                                                                                 (9) 

𝛾 =
(𝐸𝑘)2

𝐾𝑇3
𝑒−

𝐸𝑘
𝐾𝑇⁄                                                                                                                                 (10)   

𝑆 = (𝐾 +
𝐸𝑘

𝑇
) 𝑒−

𝐸𝑘
𝐾𝑇⁄                                                                                                                          (11) 

𝑇𝐶 =
𝐸𝑘

2𝐾𝐵
                                                                                                                                                (12) 

 

RESULTS AND DISCUSSION 

Energy 

The energy at the critical temperature per mole of Tl22XY is shown in the figure 1. 

From figure 1, we notice that energy of interaction between Cooper pair and an electron is a stretched 

sigmoid shaped curve. Similar shapes of curves relating energy and temperature has been noted by Ayodo 

et al., (2010); Rapando et al., (2015) and Sakwa et al., (2013). When the temperature is lowered to 

T/TC=1, i.e. T=TC, then Tl22XY changes state from normal material to superconducting state and energy 

at this instance can be uniquely determined. From the figure 1, at T=TC we notice that the energy of 

interaction for Tl2201, Tl2212 and Tl2223 is 3.548×10-22J, 3.922×10-22J, and 4.669×10-22J respectively. 

Comparatively based on the experimental bulk probe techniques on electron tunnelling experiment, the 

energy gap for Tl2212 was found to be approximately 44 meV (Kang et al., 1997), whereas the surface 

probe techniques measurements on electron tunnelling experiment gave approximately 22 meV (Huang et 

al., 1989). The experimental technique applied determines the likely energy of interaction. From Table 1 

and from figure 1, we notice that at the critical temperature (TC) for each Tl22XY, as the number of CuO2 

planes increases, the energy of interaction also increases. Comparatively higher transition temperatures 

were achieved in mercury based compounds with more than one CuO2 layer per unit cell (Schilling et al., 

1993). Furthermore an investigating on the effect of number of particles on the thermal properties of a 
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heavy nuclei system, were able to note that a decrease in temperature leads to a reduced particle 

interaction with a decrease in energy (Ndinya and Okello, 2014). This concurs with observations in 

figures 1, that a decrease in temperature results into a decrease in energy which effectively implies a 

reduction in particle interaction as a result of reduced temperature.  

 

 
Figure 1: Energy Per Mole as a Function of the Ratio T/Tc. Inset: The Enlarged Diagram Showing 

Values of Energy at T/Tc=1 

 

Specific Heat  

The specific heat values are based on derived equation (9). The figure 2 below shows the trend observed 

when plotting specific heat against the ratio T/TC. 

 
Figure 2: Specific Heat as a Function of T/Tc for Tl22XY; Inset: The Enlarged Diagram Showing 

Values of Specific Heat at T/Tc=1 

 

From the graph in figure 2, a skewed Gaussian shaped curves relating specific heat for Tl22XY to the 

ratio T/TC noted. This type of Gaussian shaped curve relating specific heat to temperature has been 

observed by other scientists while investigating relationship between specific heat and temperature for 

varied materials under varied conditions (Abdel-Hafiez et al., 2015; Bagatskii et al., 2015; Bhattacharyya 
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et al., 2015; Kim et al., 2015; Sakwa et al., 2013; Schliesser and Woodfield, 2015). The peak specific 

heat occurs at TC (Saxena, 2010), in our case the peak specific heat occurs at T/TC=1. From figure 2 

(inset), at T/TC=1, the specific heat for Tl2201, Tl2212 and Tl2223 is 5.337 mJg-1K-1, 4.597 mJg-1K-1, and 

4.038 mJg-1K-1 respectively. It is worth noting that the interaction of Cooper pair and an electron gives a 

constant specific heat of 4.5 JK-1 for any mole of Tl22XY under consideration. While studying the pairing 

symmetry of the singlet and triplet pairing Kibe et al., (2015) observed specific heat capacity of 4.8 ×
10−23JK−1 at TC of 3He-4He mixture molecule which becomes 28.91 JK-1 for a mole of 3He-4He mixture. 

We notice that as the number of CuO2 planes increases, the specific heat decreases at the TC for Tl22XY 

compounds. 

Sommerfeld Coefficient 

The Sommerfeld coefficient (γ) is defined by the ratio of specific heat to temperature. It majorly gives the 

electronic contribution to the specific heat at any given moment. The relationship generating Sommerfeld 

coefficient is based on equation (10). The graph in figure 3 below relates Sommerfeld coefficient to 

temperature. 

 
Figure 3: Sommerfeld Coefficient as a Function of Temperature for Tl22XY; Inset: Peak 

Sommerfeld Coefficient Values for Tl22XY 

 

The Sommerfeld coefficient for Tl2201, Tl2212 and Tl2223 is 6.975×10-5Jg-1K-2 (58.797 mJmol-1K-2) at 

T/TC=0.6632; 5.436×10-5 Jg-1K-2 (53.197 mJmol-1K-2) at T/TC=0.6667; and 4.01×10-5 Jg-1K-2 (44.681 

mJmol-1K-2) at T/TC=0.664 respectively. Comparatively in the compound YBa2Cu3O7-δ while using high 

resolution differential technique Loram et al., (1993) found electronic specific heat to be 60 mJmol-1K-2. 

Similar results had been observed by Laegreid et al., (1987) and Loram et al., (2000).  Bessergeven et al., 

(1995) while experimentally studying Phonon characteristic of YBa2Cu3O7-δ and Shaviv et al., (1990) 

while studying the heat capacity and derived thermo-physical properties of the high Tc superconductor 

YBa2Cu3O7−δ from 5.3 to 350 K noted that the Sommerfeld coefficient lies between 25 – 30 mJmol-1K-2. 

Cooper et al., (2014) noted that Sommerfeld coefficient for Y123 in a fully oxygenated system 

was 56 mJmol−1K−2. This is close proximity to the Sommerfeld coefficient for Tl22XY which ranged 

between 44 – 59 mJmol-1K-2. There are numerous amounts of experimental data on the Sommerfeld 

coefficient with significant discrepancies obtained by different authors. Calorimetric measurement of 

Sommerfeld coefficient was 6.5±1.5 mJmol-1K-2 in underdoped YBa2Cu3O7−δ (Marcenat et al., 2015) in 

close proximity to 15 mJmol-1K-2 found by Junod et al., (2000) and Schilling et al., (1990). The 

discrepancy between Sommerfeld coefficients arises from different extent of imperfections in samples of 

HTS cuprates used, as well as from inaccurate normalization that arises from imprecise oxygen 

composition determination (Bessergeven et al., 1995; Royston 2001). From figure 3, the peak 

Sommerfeld coefficient occurs at a truncated temperature T/TC=0.66 for all Tl22XY, implying that 
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electrons contributes a fraction of the specific heat whereas the other part of specific heat is contributed 

by other components of the material which need to be investigated (in this case we suggest either phonon 

and / or magnetic contribution).    

Entropy 

The entropy is defined as a measure of disturbance of particles within the system (Ayodo et al., 2010). 

Based on equation (11), the entropy is determined and plotted against the ratio T/TC as shown in figure 4 

below.  

 

 
Figure 4: Entropy Per Unit Mass as a Function of T/Tc; Inset: Entropy Values at T=Tc for Tl22XY 

 

The entropy against the temperature curve shown in figure 4 is a stretched sigmoid shaped curve. Similar 

shapes of curves were noted by other researchers (Kibe et al., 2015; Rapando et al., 2015; Sakwa et al., 

2013; Van Der Marel et al., 2002). When the entropy was investigated per mole of Tl22XY, the value for 

all the samples under investigation was found to be 5.603×10-24JK-1. Loram et al., (1993), experimentally 

determined entropy to range between 0.06 – 0.22 KB per unit cell when holes were varied from 0.57 – 

0.97 per unit cell.  A KB (Boltzmann constant) is equivalent to 1.38 × 10−23 JK−1. Hence, Loram et al., 

(1993)’s entropy is found to range between 8.28 × 10−25 −  3.036 × 10−24 Junit cell−1 K−1. Rapando et 

al., (2015), while theoretically using the dipole mediated t-J model (t-J-d) in determining thermodynamic 

properties noted a maximum entropy of 3.15 × 10−3ev/K (5.04693 × 10−22JK−1), whereas Kibe et al., 

(2015), while investigating the thermodynamic properties of heavy fermion superconductors by 

considering an interaction of singlet and triplet state noted an entropy of 3.5 × 10−21JK−1. The values of 

this theoretical study are in close proximity to the range of values determined experimentally and 

theoretically. Whereas when the entropy was considered in terms of per unit mass of sample, the 

following results were found for Tl2201, Tl2212 and Tl2223 to be 4.003 mJg-1K-1, 3.448 mJg-1K-1 and 

3.028 mJg-1K-1 respectively. From figure 4 it is noted that entropy decreases with a decrease in 

temperature though entropy decreases with an increasing number of CuO2 planes in Tl22XY.  

In conclusion we notice that energy increases with increase in the number of CuO2 planes, Specific heat 

per unit mass decrease with an increase in the number of CuO2 planes, Sommerfeld coefficient decrease 

with increase in number of CuO2 planes, Specific heat and entropy per mole are constants not depending 

on CuO2 planes and finally entropy per unit mass decreases with increase in the number of CuO2 planes. 
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