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ABSTRACT 

Certain types of interactions can lead to massive quasi-particles such that the resulting effective masses of 

the electrons may reach values between 100 and 1000 times the mass of the free electrons. The 
interactions between such heavy electrons are assumed to be singlet s-wave and triplet s-wave, and their 

contribution to s-wave superconductivity of heavy electrons has been studied. The effective Hamiltonian 

is diagonalized using the Bogoliubov-Valatin transformation, and the thermodynamic properties of such 

heavy fermion systems are calculated. The total energy is found to increase with temperature. There is a 
maximum in the specific heat at TC=5.2K suggesting a phase transition. The magnitude of specific heat 

is,CV≃4.8×10
-23

J/K at TC. The entropy changes continuously through the transition temperature TC. 

Entropy of the system is found to decrease with temperature as is conventionally the case. 
 

Keywords: Heavy Fermions, Super Fluid, Transition Temperature 

  

INTRODUCTION 

There are experimental observations in some cases that certain types of interactions can lead, at low 

temperatures, to the formation of a Fermi liquid-type state with massive quasi-particles (Andrei, 2004). 

Depending upon the detailed characteristics for the considered systems, the resulting effective masses of 
the electrons may reach values between 100 and 1000 times the mass of the free electrons. Such electrons 

are called heavy electrons. By definition, a common and independent Fermi liquid is stable and undergoes 

no phase transition. Experimental evidence for magnetic or superconducting transitions in heavy- 
electrons systems therefore imply that residual interactions driving these transitions need to be 

considered. 

There is a common view that in the heavy-electron systems, the correlation effects or strong interactions 

are the dominating reasons behind the low-temperature properties of some materials. The heavy-electron 
state in most cases develops smoothly within a narrow temperature range upon cooling at low 

temperatures. In this sense, it may be regarded as a particular state of certain metals, caused by a delicate 

competition of interactions between ionic moments of atoms with incompletely-filled electronic shells 
(favorably f electrons) and itinerant electrons. Such a state may be unstable and undergo phase transitions, 

either to magnetic order or superconductivity. In fact, heavy-electron system involves many-body physics 

that deals with strongly interacting electrons in metals. 
It is well known that for the standard BCS theory the obtained value for the size of the Cooper pair is of 

the order of 10
3
A° whereas the experimentally extracted value for HTSC is of the order of 10A° (Riseman 

et al., 1995; Tifrea, 2003). Hence in the conventional superconductors (BCS type), the electrons in the 

Cooper pairs will be weakly bound because of the large size of the Cooper pairs, whereas the electrons in 
the HTSC will be strongly bound in the Cooper pairs because of the smaller size of the Cooper pair. 

Hence strong coupling between electrons in HTSC will lead to heavy fermions being present in HTSC. It 

is this fact that leads to the study of thermodynamic properties of heavy fermion superconductors. 
Superconducting compounds which consist of one magnetic ion with 4f and 5f electrons, (generally Ce or 

U) and other constituents being s, p or electron metals are known as a family of heavy-fermion 

superconductors. A large number of heavy fermion materials superconduct exclusively under pressure. 
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The TC values of superconducting heavy-fermions are in general very low. The first such superconductor, 

CeCu2Si2, was discovered in 1979 by Steglich and co-workers (Grewe and Steglich, 1991). Later the 

heavy-fermion phenomena was confirmed by the discovery of UBe12 and UPt3, with the critical 
temperatures of  TC=0.65,0.9 and 0.5K respectively. Since the many new heavy fermion systems that 

super conduct at low temperatures has been found. The crystal structure of these compounds does not 

have a common pattern, but varies from case to case. 
The superconducting states in heavy-fermions display some anomalous properties. The Sommerfeld 

Constant, γ=C∕T, is very large and the specific heat C has a jump at the transition temperature TC. This 

shows that the heavy electrons participate in superconducting pairing. Moreover the temperature 

dependence of C below TC is not exponential; rather it follows a power law, indicating that the energy gap 
at the Fermi surface may have nodes in certain directions. This also means that the energy gap is highly 

anisotropic. The gap ratio for UBe12 is 2△∕K TC≃6.7 and this is much higher compared to the value of 3.5 

that is obtained in the BCS theory. This indicates that the heavy fermion superconductivity is an 
unconventional type of superconductivity. The experimental observations in UBe12 indicate the existence 

of a d-wave energy gap, and sometimes an s-wave superconductor. Thus the pairing mechanism in heavy-

fermion is not yet established properly and this is one of the most difficult problems in condensed matter 

physics (Allan et al., 2013). Even the specific superconducting properties are not clearly understood 
(Keisuke & Daisuke, 2012). 

As a first step in understanding the properties of heavy-fermion superconductors, it is assumed that there 

exists s-state singlet pairing (
1
S0; s=0, l=0) and s-state triplet pairing (

3
S1 ;s=1,l=0), also called the spin 

triplet state, simultaneously in the heavy fermion superconductor. The Hamiltonian, H, for the system will 

then contain the kinetic energy term, and the interaction term due to singlet and triplet pairing (Kuei et al., 

2014). To get the quasi-particles of the heavy-fermion superconducting state, the Hamiltonian, H, will be 
diagonalized using the Bogoliubov canonical transformation (Bogoliubov, 1958). The energy of the 

system, the specific heat C, the entropy  S and the transition temperature TC are calculated. The results are 

compared with whatever information is available in the literature. 

Theoretical Formulation 
The superconducting electron system is considered as being in some condensed phase and the scattered 

pairs of electrons are in s-state singlet pairing and s-state triplet pairing. The electrons are paired so as to 

minimize the ground state energy. With this assumption the Hamiltonian for the singlet and triplet pairing 
is written as, 

H=K.E +P.E (Singlet pairing) +P.E (Triplet pairing).                                  (1) 

where the pairing superconducting states are considered to be both singlet (s=0,l=0) and triplet (s=1,l=0). 
The Hamiltonian in Eq (1) is then written as  

 + + + + + +

k k k -k -k kk k -k -k k kk k -k -k k

k kk kk

H= ε c c +c c - V c c c c + U c c c c     

 

                                                                          (2) 

Eq (2) will be expressed in terms of the new operators and then diagonalized to obtain the elements of the 
Hamiltonian that correspond to stationary states where the system is in equilibrium. Bogoliubov-Valatin 

Transformations are used to transform Eq (2). This is achieved by defining two new operators that are 

related to the old fermion creation and annihilation operators such that, 

 
+

k k k k -kγ =u c -v c
                                                  

+

-k k -k k kγ =u c +v c                                                       (3)  
                                              

Their conjugates are 
+ +

k k k k -kγ =u c -v c                                                    
+ +

-k k -k k kγ =u c +v c                                                        (4) 

In order to write the Hamiltonian in Eq (2) in terms of the new operators, the inverse transformation of Eq 

(3) and (4) are used. The inverse transformations of (3) and (4) are 
+

k k k k -kc =u γ +v γ                                                      
+

-k k -k k kc =u γ -v γ  
+ +

k k k k -kc =u γ +v γ                                                      
+ +

-k k -k k kc =u γ -v γ                                                    (5) 

The Hamiltonian expressed in terms of new operators will have three parts namely the Kinetic, Potential 

(Singlet) and Potential (Triplet) parts which are then diagonalized as explained in each step below. 
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Kinetic Energy 

Eq (5) are used in Eq (2) to express the K.E of the Hamiltonian in terms of the new operators. 

Substituting the creation and annihilation operators using Eq (5) we get, 

 2 + + + 2 + 2 + + + 2 +

K.E k k k k k k k -k k k -k k k -k -k k -k -k k k -k k k k k -k k k k

k

H = ε u γ γ +u v γ γ +u v γ γ +v γ γ +u γ γ -u v γ γ -u v γ γ +v γ γ                               (6) 

Introducing particle number operators mk that represent cases when particles are created we write, 
+

k k km γ γ                                             +

k k k1-m γ γ  
+

-k -k -km γ γ                                            +

-k -k -k1-m γ γ                                                                                  (7) 

Eq (8) are used in Eq (7)  to get 

 2 2 2 2 + + + +

K.E k k k k k k -k k -k k k k -k k k -k k k k k -k k k -k k

k

H = ε u m +v (1-m )+v (1-m )+u m +u v γ γ +u v γ γ +u v γ γ +u v γ γ               (8) 

Using the relations, 
+ + + +

k -k -k kγ γ =-γ γ               and             
-k k k -kγ γ =-γ γ                                                                                       (9) 

We get, 

    2 2 2 + +

K.E k k k k k -k k k k -k -k k

k

H = ε 2v +(u -v ) m +m +2u v γ γ +γ γ                                                                      (10) 

The first term of equation (11) is a constant, the terms with mK and m-K generate particles and are called 

diagonal terms bearing k k  , k k  
 operators, the third term is off-diagonal i.e. bearing  k k  

  and 
k k 

operators. They are without mK and m-K. 
Eq (10) is the transformed form of the Kinetic Energy part. 

Potential Energy for Singlet Pairing 

Eq (5) are used to express the P.E of the singlet part of the Hamiltonian in terms of the new operators. 

From Eq(2) 
+ +

P.E(S) kk k -k -k k

kk

H =- V c c c c  



                                                                                                                           (11) 

Using Eq (5) , Eq (11) and later transformed. The P.E Part thus becomes 

   2 + + + + 2 2 + + 2 + +

P.E(S) kk k k -k k k k k k k -k -k k -k k k -k k k k -k -k k k k k k k -k

kk

H =- V u γ γ -u v γ γ +u v γ γ -v γ γ u γ γ +u v γ γ -u v γ γ -v γ γ              



 (12) 

Introducing particle number operators we write 

 
+

k k k1-m γ γ             
+

k k km γ γ                k k k1 m               k k k1 m 

         

k k km 

                k k k1 m 

             k k km 

                  k k km 

                                          (13) 

Eq (13) are used to represent Eq (12) in terms of number operators. Thus 

      2 + + 2 2 2 + +

P.E(S) kk k k -k k -k k k k k k k -k k -k k k -k k k -k k k k

kk

H =- V u γ γ -v γ γ -u v m +u v 1-m u γ γ-v γ γ +u v 1-m -u v m            



  (14) 

we get 

   P.E(S) kk k k k k -k k -k k

kk

H =- V u v u v 1-m -m 1-m -m    



    2 2 + +

k k -k k k k k -k -k k+u v 1-m -m u -v γ γ +γ γ    +4OT (15) 

where 4OT stands for "fourth order terms”. The third term is an off-diagonal term which shall be 

considered later so as to leave a system of independent fermions.  
Potential Energy for Triplet Pairing 

From equation (2) we write 
+ +

P.E(T) kk k -k -k k

kk

H = U c c c c  



                                                                                                                (16) 

Eq (5) are used to transform equation (16). The P.E (triplet) part thus becomes 

     + + + +

P.E(T) kk k k k -k k -k k k k -k k k k k k -k

kk

H = U u γ +v γ u γ -v γ u γ -v γ u γ +v γ        



                                            (17) 

or 
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 2 + + + + 2

P.E(T) kk k k -k k k k k k k -k -k k -k k

kk

H = U u γ γ -u v γ γ +u v γ γ -v γ γ



  2 + + 2 + +

k -k k k k -k -k k k k k k k -ku γ γ +u v γ γ -u v γ γ -v γ γ             
     

(18) 

The particle number operators in Eq(13) are then used in Eq (18) to get 

   
P.E(T)

2 + + 2 + + 2 2

kk k k k -k k -k k k k k k -k k k k -k -k k k k k k -k k

kk

H = U u u v 1-m γ γ -u u v m γ γ -v u v 1-m γ γ +v u v m γ γ            



  

            2 + + 2 + + 2 2

k k k k k -k k k k -k k -k k k k -k -k k k k k k -k k+v u v m γ γ -v u v 1-m γ γ +u u v 1-m γ γ -u u v m γ γ             

              k k k k k k k k k k k -k k k k k -k -k k k k k k -k+u v u v m m -u v u v m 1-m +u v u v 1-m 1-m -u v u v m 1-m            +4OT(19) 

or 

 
P.E(T)

2 + +

kk k k k k k -k k -k k k -k k k k -k -k k -k k

kk

H = U u v u v ((m +m -1)(m +m -1)+u v (1-m -m ) u (γ γ +γ γ )-γ γ        



  

          2 + +

k k k -k k k -k -k k -k k+u v (m -1+m ) v (γ γ +γ γ )-γ γ                                                                                 (20) 

Eq (20) is the transformed form of the Potential Energy of the triplet pairing. The last two terms are the 
off-diagonal terms. 

Effective Hamiltonian 

The effective Hamiltonian H=HK.E + HP.E(S) + HP.E(T) is written by adding equations (10), (15) and (20) 
with the approximation that the 4OT can be neglected being negligible higher order terms i.e. 

H=HK.E + HP.E(S) + HP.E(T) 

     2 2 2 + +

k k k k k -k k k k -k -k k

k

H= ε 2v + u -v m +m +2u v γ γ +γ γ  

  

 

                                                                            (21) 

Parametric Expressions for uk and vk for the Singlet State 
A system of independent fermions is determined on the assumption that the off-diagonals terms of Eq 

(10), (15) and (20) vanish. At the lowest energy state of this system, both mk and m−k are zero. Hence to 

carry out the Bogoliubov-Valatin transformation for a superconductor in its ground state, mk and m-k  are 
set to zero in Eq (10) and (15) and the 4OT neglected since the non-diagonal terms vanish. The modified 

form of combining equations (10) and (15) then gives 

                      (22) 

When the non-diagonal terms vanish Eq (22) becomes 

                          (23)   

 The condition 
2 2

k ku +v =1 is used to express uk and vk in the form of a single variable  such that     

 
2

k k

1
= -χ

2
u    

2

k k

1
v = +χ

2
               (24)  

and when used in Eq (23) gives 
 

                         (25) 

The quantity, Δk, is expressed as 

                                                                (26) 

Hence on solving equation (25) 

       2 21 1 1kk k k k k k k k k k k k k k k k k k k

kk

V u v u v m m m m u v m m u v     

            


         

  2(( 1)( 1) (1 ) ( )kk k k k k k k k k k k k k k k k k k k k

kk

U u v u v m m m m u v m m u       

             


         

 2( 1 ) ( )k k k k k k k k k k ku v m m v       

             

    2 22 0k k k k k k k kk k k k k k k

k kk

u v V u v           

   


     

 2 22 0k k k k k kk k k

k

u v u v V u v   



  



2 21 1
2 2 0

4 4
k k k kk k

k

V    



   

21

4
k kk k

k

V  



  
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k
k

2 2

k k

ε
χ =±

2 ε +Δ
                                        (27)  

Quasi particle Spectrum for the Singlet State 

Using Eq (27) in Eq (24) gives 
 

2 k
k

2 2

k k

ε1
u = 1+

2 ε +Δ

 
 
 
 

                                                                        (28) 

2 k
k

2 2

k k

ε1
v = 1-

2 ε +Δ

 
 
 
 

                                                                                                                        (29) 

 
The Hamiltonian consisting of diagonal terms is used to determine the quasi particle energy because the 

diagonal terms correspond to stationary states when the system is in equilibrium.  

The quasiparticles energy is found using equation (28) and equation (29).  
The Energy Eks necessary to create a quasi particle excitation will be obtained from the diagonal terms of 

the Hamiltonian         2 2 2

D k k k k k -k kk k k k k -k k -k k

k kk

H = ε 2v + u -v m +m - V u v u v 1-m -m 1-m -m    



     (30)

      

 

Now, 

D

ks

k

H

m


 

  
                             (31) 

        

   2 2

ks k k k k k kk k k -k k

kk

E =ε u -v +2u v V u v 1-m -m    



                                      (32) 

Approximating  k kk k k k k

kk

V u v 1 m m    


     

Equation (32) becomes  

 2 2

ks k k k k k kE =ε u -v +2u v Δ                            (33) 

Eq (28) and (29) are substituted in Eq (35) to obtain the quasi particle energy for the singlet pairing. 
       

2 2

ks k kE = ε +Δ                                          (34) 

Equation (34) is the quasiparticles energy spectrum of the singlet state. 

 

Parametric expressions for uk and vk for the Triplet state  

To carry out the Bogoliubov-Valatin transformation for a superconductor in its ground state, the mk , m-k 
are set equal to zero in Eq (10) and (20) and the 4OT neglected since the non-diagonal terms vanish. 

The modified form of combining equations (10) and (20) then gives 
+ + 2 + +

k k k k -k -k k kk k k k k -k -k k

k kk

2ε u v (γ γ +γ γ )+ U (u u v (γ γ +γ γ )=0  



                                               (35) 

or 
2

k k k k kk k k

k

2ε u v +u U u v =0  



                          (36) 

Eq (36) is solved using Eq (26) to get 
                           

1 1

2 2
2 2

k k k kk k

k

1 1 1
2ε -X + -X U -X =0

4 2 4




     
     
     

                                                                                             (37) 
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We now define a new quantity Δ as, 
1

2
2

kk k

k

1
Δ= U -X

4




 
 
 

                                         (38) 

Eq (37) then becomes 
1 1

2 2

k k k k

1 1 1
2ε -X +X + -X Δ=0

2 2 2

     
     
     

                                      (39) 

or 
2 2

k
k 2 2

k

Δ -4ε1
X =

2 4ε +Δ

 
 
 

                            (40) 

The parametric expressions for uk and vk are obtained by substitution of Eq (40). 

Using Eq (24) and (40) we obtain 

k
k

2 2

k

2ε
u =±

4ε +Δ
       and       k

2 2

k

Δ
v =±  

4ε +Δ
                                                                                        (41) 

Quasi particle Spectrum of the Triplet State 

The Hamiltonian consisting of diagonal terms is used to determine the quasi particle energy because the 

diagonal terms correspond to stationary states when the system is in equilibrium. The quasiparticles 
energy is found using Eq (41). 

The Energy EkT necessary to create a quasi particle excitation will be obtained from the diagonal terms of 

the Hamiltonian  
2 2 2

d k k k k k k -k kk k k k k k -k k -k

k k kk

H = 2ε v + ε (u -v )(m +m )+ U u v u v ((m +m -1)(m +m -1)    



                                   (42) 

Now 

d

kT

k

H

m


 

  
          

 

Approximating 
kk k k k k

k

U u v ((m m 1)    


     gives 

2 2

kT k k k k kΕ =ε (u -v )+2u v Δ                           (43)    

Eq (41) are substituted in Eq (43) to get 

2 2

k k
kT k 2 2 2 2 2 2 2 2

k k k k

4ε 2εΔ Δ
Ε =ε - +2 Δ

4ε +Δ 4ε +Δ 4ε +Δ 4ε +Δ

  
  
    

 

  
3 2

k k
kT 2 2

k

4ε +3ε Δ
Ε =

4ε +Δ
                                                                                                                                     (44) 

Eq (44) is the quasi particle energy for the triplet pairing. 

 

Energy of the Assembly 
 The effective Hamiltonian given by Eq (2) is considered by summing the diagonal and non-diagonal 

parts of the various components of the Hamiltonian with the condition that the non-diagonal parts are set 

equal to zero or vanish whereas the 4OT are neglected i.e.  
EK=E + Singlet + Triplet 

     2 2 2 + +

k k k k k k -k k k k -k -k k

k

E = ε 2v + u -v m +m +2u v γ γ +γ γ

       2 2 + +

kk k k k k -k k -k k k k -k k k k k -k -k k

kk

- V u v u v 1-m -m 1-m -m +u v 1-m -m u -v γ γ +γ γ        



                                                                            
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  2 + +

kk k k k k k -k k -k k k -k k k k -k -k k -k k

kk

+ U u v u v ((m +m -1)(m +m -1)+u v (1-m -m ) u (γ γ +γ γ )-γ γ        



  

 2 + +

k k k -k k k -k -k k -k k+u v (m -1+m ) v (γ γ +γ γ )-γ γ                                          (45)  

The diagonal parts of Eq (45) correspond to quasi-particle states when the system is in equilibrium i.e 

      2 2 2

k k k k k k -k kk k k k k -k k -k k kk k k k k

k kk kk

E = 2ε v + u -v m +m - V u v u v 1-m -m 1-m -m + U u v u v       

 

  
    

     (46) 

The particle number operators mk= m-k = 0 (This means the quasi-particles represented by the operators 

γ's are few in number or do not exist).Eq (46) then becomes 
2

k k k k k kk k k k k kk k k

k k

E =2ε v -u v V u v +u v U u v     

 

                                       (47) 

 The singlet and triplet gaps are represented by 

v kk k k

k

Δ = V u v  



                                                                                                                             (48) 

u kk k k

k

Δ = U u v  



                                                                                                                             (49) 

Eq (47) is then by substitution written as 
2

k k k k k v k k uE =2ε v -u v Δ +u v Δ                                                                                 (50) 

 

To study the temperature dependence of the system the total energy Eτ is found by multiplying energy of 

states Ek by the thermal activation factor 
K

B

-E

K T
e . Hence  

K

B

-E

K T

kE =E e                                  (51) 

 Equation (50) is used in Eq (51) thus 
K

B

-E

K T2

k k k k u vE =(2ε v +u v (Δ -Δ ))e                                                                                 (52) 

Eq (52) is the total energy of the assembly with the triplet and singlet contributions. 

Specific Heat Capacity 

The specific heat capacity is determined using the following relation 

E
C

T





                           (53) 

and hence 
K

B

-E2
K TK k k K k k u v

2

B

(2E ε v +E u v (Δ -Δ ))
C= e

K T
                                              (54) 

Eq (54) is the Specific heat Capacity equation for heavy fermion systems. 

Transition Temperature 
The transition temperature of the system is obtained by witing 

CT T

C
0

T 

 
 

 

                                              (55) 

To simplify equation (54) the larger terms are then represented by letting 
2

K k k K k k u v

B

(2E ε v +E u v (Δ -Δ ))
ρ=

K
 and K

B

E

K

 
 
 

=β.                                                                (56)  

Then Eq (54) can be expressed as       
-β

T

2

ρe
C=

T
                        (57) 
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Thus we get 

C

β β
- -

T T

3 4

T=T

2ρ βρ
- e + e =0
T T

   
   
   

 
 
 
 

                                 (58) 

or 

K
C

B

Eβ
T = =

2 2K
                                                                                                                           (59) 

Entropy 

The entropy of a system is determined from the relation 
2 2 2

2 1
1 1 1

dQ mCdT
S -S = ds= =

T T                         (60)  

The equation for entropy from equation (60) then becomes 

  K K K K

B B B B

-E -E -E -E2 2 3 4 2
K k k K k k u v K T K T K T K TB B B B

2 3 4

B K K K K

2E ε v +E u v Δ -Δ K 3K 6K T 6K T
S=m e + e + e + e

K TE E E E

  
    

  

                    (61)                                                                 

where m≈100me. 

Essential Parameters  

The following values for different physical quantities have been used. 

The numerical values of VC are obtained using the condition 
2 2

k ku +v =1 

k

1
u =

2
 ,    k

1
v =

2
      

According to the experimental works of (Allan, et al., 2013) on heavy fermions 

Single particle energy, 
 

-23

k Dε =hω =300μeV=4.8×10 J
 

The triplet and singlet energy gaps are given by the relation v u0.05    according to (Khanna, 2008). 

The heavy fermion superconductivity energy window is equivalent to -600μeV<E<600μeV according to 

(Allan, et al., 2013) 

Energy gap for the triplet ∆u=9.6×10
-23

J and     2 2

KS k kE = ε +Δ
 

KSE = 4.8239402×10
-23

J ,    kTΕ =9.6×10
-23

J     and   
-23

KE =1.44239×10 J  

Boltzmann constant
-23 -1

BK =1.3806488×10 JK
 

 

RESULTS AND DISCUSSION 

 
Figure 1: Variation of Total Energy against Temperature 
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Eq (52) was used to compute the values of quasi-particle energy against changes in the temperature. A 

graph depicting the variation of quasi-particle energy versus temperature is shown in figure 1. 

Eq (54) is used to compute the values of specific heat against temperature changes 
    

                                 
Figure 2: The graph of specific heat against temperature. 

 

The shape of the specific heat curve is similar to the specific heat curve of  UBe13 (Ott H.R.,1992). The 

curve shows a turning point at TC=5.2K. 
Equation (61) gives the variation of Entropy with temperature 

 

 
Figure 3: Variation of Entropy against Temperature 

 

Discussion  
The value of E decreases below TC (5.2K) and becomes zero at T=0 K and this is consistent with the 

nature of the super-fluid state. The total energy of the system increases with increase in temperature of the 
system. 

In figure 1, it is observed that at T=0, E=0 which implies that the states below the superconducting gap 

are filled and the states above the superconducting gap are empty. Now it is much harder for impurities to 

scatter the pair of electrons because they need a finite amount of energy. If there is not enough energy to 
get to an unoccupied state, then the electron does not change its state, there is no dissipation, and hence 

there is no electrical resistance. To get across the superconducting gap requires a minimum amount of 

energy of about 1.2×10
-23

J. The gap doesn’t appear suddenly at TC (5.2K); it opens up gradually as T 
decreases below TC, just like the order parameter. When the temperature increases, the energy is observed 

to increase. This implies thermal fluctuations will populate the f-level by conduction electrons, thereby 
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suppression of the superconducting gap. At high temperatures the f-electrons are localized on their atomic 

sites and do not contribute to conduction. 

Superconductivity is a true reversible thermodynamic state and in moving from the normal to the 
superconducting state, a material undergoes a thermodynamic phase transition. In order for this to happen, 

the overall free energy must be lower in the superconducting state than in the normal state as seen in 

figure 1 and this energy difference, which depends on the temperature, is known as the condensation 
energy. At high temperatures heavy fermion compounds behave like normal metals and the electrons can 

be described as Fermi gas, in which the electrons are assumed to be non-interacting fermions. The 

specific heat capacity of heavy fermion superconductors jumps at TC, but the scale remains set by the 

large effective mass of the quasiparticles (Coleman, 2007). If the superconducting state did not have 
heavy fermion properties, the specific heat below the jump would be much smaller (Coleman, 2007). 

In figure 2, the graph of specific heat assumes nearly perfect Gaussian shape. A peak in specific heat 

occurs at about 5.2K. At this point the system is unstable and there is a second order phase transition from 
a normal metal into a superconducting state that is much like the super fluid transition. At TC, there is a 

phase transition, the fermions pair up and the specific heat depicting a second order transition meaning 

there is no latent heat. 
The weak interaction of fermions is mediated by the lattice and approaches zero at absolute zero. Super 

fluidity in fermions is exhibited on the basis of interaction and is a phenomenon that is realized at any 

temperature below a finite transition temperature. At room temperatures, the f-electrons of the magnetic 

ions behave as localized spins; the conduction electrons are the s, p or d electrons and have quite ordinary 
effective masses. As the temperature is lowered, the f-electrons begin to couple to the conduction 

electrons, resulting in very large effective masses for the hybridized carriers (Andrei, 2004). At low 

temperatures the electronic specific heat shows a continuous increase until superconductivity sets in at TC 
=5.2K. 

Furthermore, the temperature dependence of the heat capacity below TC is not exponential. Instead, it 

follows a power law, as seen from figure 2 indicating that the energy gap at the Fermi surface has nodes 

in certain directions. Thus, the energy gap is highly anisotropic (Andrei, 2004).  
However, contrary to conventional materials, some of the f-electrons become itinerant at low 

temperatures. Crudely speaking, it is these itinerant f-electrons that lead to the uncommon behaviors of 

heavy fermion materials at low temperatures (Hua, 2008). 
The large magnitude of the specific heat jump (4.8×10

-23
J/K) that occurs at the superconducting transition 

temperature, TC, shows that the electrons that take part in the formation of the heavy–fermion state form 

the Cooper pairs. 
In figure 3 shown above, entropy increases continuously with increase in temperature. This shows 

excitation of the particles in the system. The entropy approaches zero at T→0, as it should. 

The gradient dS/dT goes to zero sharply as T=0K.The rate of change dS/dT (gradient of the graph) 

consistently decreases at temperatures below TC=5.2K and becomes zero from T=1.5K i.e. system 
becomes more orderly. When molecules are cooled their total energy decreases resulting into less and less 

vigorous molecules.  

The entropy of the system at TC is 3.5×10
-21

J/K .The graph confirms this observation by depicting that 
entropy decreases with decrease in temperature. At extremely low temperatures as the entropy of the 

material drops, an electron passing by lattices in the crystal will cause an electron- electron interaction 

making efforts to form Cooper pairs and at a particular temperature i.e.TC the material changes electric 
state. This is when the material becomes superconducting. But if a field is applied, the electrons would 

have some component counteracting the electron-electron interaction and decreases entropy. At T=0, S=0, 

it seems reasonable to regard this entropy as being carried by a set of localized f spins which emerge 

above temperatures. To ensure that S = 0 at T = 0, localized spins order magnetically due to spin-spin 
interaction. Similarly, a system with the fermion condensate must experience some sort of a low-

temperature phase transition eliminating the excessive entropy S. Particle disorder decreases with 

decrease in the total energy of the system.  



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2015 Vol. 5 (2) April-June, pp. 23-33/Kibe et al. 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  33 

 

Conclusion 

Figure 3 suggests that particles settle and interact less as the system gives out energy. This is in agreement 

with conventional knowledge and concurs with (Khanna et al., 2010). It is also in good agreement with 
(Ayodo, 2008), (Ayodo et al., 2010) on low temperature statistical thermodynamics of binary bose-fermi 

system. Entropy is a measure of molecular disorder (Ayodo, 2008) when the system cools, the internal 

energy of the particles decreases resulting in less and less particle motion. The graph in figure 3, confirms 
this observation by predicting that entropy decreases with decrease in temperature even for a system of 

heavy fermions 
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