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ABSTRACT                                                                                                                                                             
The present investigation is a mathematical study on three species syn-eco system with mortality rate for 
the three species. The system comprises of two hosts S1, S2 and one commensal S3 i.e., S1 and S2 both 

benefit S3, without getting themselves affected either positively or adversely. Further, S1 and S2 are 

neutral. The model equations constitute a set of three first order non-linear differential equations. Criteria 

for the asymptotic stability of all the eight equilibrium states are established. Trajectories of the 
perturbations over the equilibrium states are illustrated. Further, the global stability of the system is 

established with the aid of suitably constructed Liapunov’s function and the numerical solutions for the 

growth rate equations are computed using  Runge-Kutta fourth order scheme. 
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INTRODUCTION                                                                                                                                                  
Ecology, a branch evolutionary biology, deals with living species that coexist in a physical environment 

sustain themselves on common resources. It is a common observation that the species of same nature can 

not flourish is isolation without any interaction with species of different kinds. Syn-ecology is an 
ecosystem comprising of two or more distinct species. Species interact with each other in one way or 

other. The Ecological interactions can be broadly classified as Ammensalism, Competition, 

Commensalism, Neutralism, Mutualism, Predation, Parasitism and so on. Lotka (1925) and Volterra 
(1931) pioneered theoretical ecology significantly and opened new eras in the field of life and biological 

sciences. Mathematical Modeling is a vital role in providing insight in to the mutual relationships 

between the interacting species.  
The general concepts of modeling have been discussed by several authors  Colinvaux (1986), Kapur 

(1985), Kushing (1977), Meyer (1985). Srinivas (1991) studied competitive ecosystem of two species and 

three species with limited and unlimited resources. Later, Narayan and Charyulu (2007) studied prey-

predator ecological models with partial cover for the prey and alternate food for the predator. Stability 
analysis of competitive species was carried out by Reddy et al., (2007), Sharma and Charyulu (2008), 

while Ravindra (2008) investigated mutualism between two species. Acharyulu and Charyulu (2011) 

derived some productive results on various mathematical models of ecological Ammensalism with 
multifarious resources in the manifold directions. Further, Kumar (2010) derived some mathematical 

models of ecological commensalism.  

The present author Prasad (2014) studied continuous and discrete models on the three species syn-

ecosystems. The present investigation is an analytical study of three species (S1, S2, S3) syn-eco system 
with mortality rate for the three species. The system comprises of two hosts S1, S2 and one commensal S3 

i.e., S1 and S2 both benefit S3, without getting themselves affected either positively or adversely. Further, 

S1 and S2 are neutral. Commensalism is a symbiotic interaction between two populations where one 
population (S1) gets benefit from (S2) while the other (S2) is neither harmed nor benefited due to the 

interaction with (S1). The benefited species (S1) is called the commensal and the other (S2) is called the 

host. Some real-life examples of commensalism are presented below.  
(i). A squirrel in an oak  tree gets a place to live and food for its survival,  while the tree  remains  neither 

benefited nor harmed. 
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(ii). A flatworm  attached to the horse  crab and  eating  the crab’s food,  while the  crab is  not put to any 

disadvantage.                                                                                                                                             

Notations and  Basic Equations 

1 2,S S : Host of 3S      

3S :  Commensal for 1S  and 2S  

 iN t : The population strength of iS  at time t , 1,2,3i   

t :  Time instant 

3d :  Natural death rate of 3S  

ia  :  Natural growth rate of iS , 1,2i    

iia  :  Self inhibition coefficients of iS , 1,2,3i  

13 23,a a  :  Interaction coefficients of 1S  due to 3S  and 2S  due to 3S   

3
3

33


d

e
a

:  Extinction coefficient of 3S    

i
i

ii

a
k

a
 :  Carrying capacities of iS , 1,2i    

Further, the variables 1 2 3, ,N N N  are non-negative and the model parameters 1 3 3 2 13 11 22, , , , , , ,a e d a a a a   

33 23 1 2, , ,a a k k  are assumed to be non-negative constants.  

The model equations for syn ecosystem are given by the following system of first order non-linear 

ordinary differential equations.   

Equation for the first species ( 1N ): 

       1
1 1 11 1 

dN
N a a N

dt
                                                                                                                         (1)                                           

Equation for the second species ( 2N ):                                                                                

 2
2 2 22 2 

dN
N a a N

dt
                                                                                                                        (2)                                          

Equation for the third species ( 3N ):                                                               

 3
3 3 33 3 13 1 23 2    

dN
N d a N a N a N

dt
                                                                                           (3)                       

Equilibrium States 

The system under investigation has eight equilibrium states given by                                               

0, 1, 2, 3idN
i

dt
                                                                                                                                     (4)  

Fully washed out state.     

0,0,0: 3211  NNNE                                                                                                                                   

States in which only two of the tree species are washed out while the other one is not. 

2 1 1 2 3: , 0, 0  E N k N N                                                                                 

3 1 2 2 3: 0, , 0  E N N k N                                                                                

4 1 2 3 3: 0, 0,   E N N N e                                                                                                                                    

States in which only one of the tree species is washed out while the other two are not. 
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5 1 1 2 2 3: , , 0  E N k N k N                                                             

13 1
6 1 1 2 3 3

33

: , 0,   
a k

E N k N N e
a

                                                                

23 2
7 1 2 2 3 3

33

: 0 , ,   
a k

E N N k N e
a

                                                                                                                          

The co-existent state (or) normal steady state.   

13 1 23 2
8 1 1 2 2 3 3

33

: , ,


   
a k a k

E N k N k N e
a

                                                                                         

Stability Analysis of Equilibrium States 

Let us consider small deviations from the steady state  

i.e., ( ) ( ), 1,2,3  i i iN t N u t i                                                                                                               (5)  

where ( )iu t  is a small perturbations in the species iS .  

The basic equations are linearized over the equilibrium  state  321 ,, NNNN   to obtain  the equations 

for the perturbed state as   

 1
1 11 1 12 

du
a a N u

dt
                                                                                                                              (6)              

 2
2 22 2 22 

du
a a N u

dt
                                                                                                                           (7)              

 3
13 3 1 23 3 2 3 33 3 13 1 23 2 32      

du
a N u a N u d a N a N a N u

dt
                                                             (8)                                       

The characteristic equation for the system is given by  

det [A – I] = 0                                                                                                                                            (9) 
The equilibrium state is stable, if all the roots of the equation (9) are negative in case they are real or have 

negative real parts, in case they are complex.  

Stability of 1 1 2 3: 0, 0, 0  E N N N  

The basic equations are linearized to obtain the equations as  

31 2
1 1 2 2 3 3;  ;     

dudu du
a u a u d u

dt dt dt
                                                                                                (10)                                              

The characteristic equation is 

   1 2 3 0   a a d                                                                                                                  (11)                                                       

The characteristic roots of (11) are 1 2 3, ,a a d . Since two of these three roots are positive. Hence the state 

is unstable and the solutions of the equations (10) are 
31 2

1 10 2 20 3 30;  ;  


  
d ta t a tu u e u u e u u e                                                                                               (12)                                          

where 10 20 30, ,u u u  are the initial values of 1 2 3, ,u u u  respectively.                                                                                   

The trajectories in  1 2u u  and 2 3u u  planes are 

1 2 3

1 1 1

31 2

10 20 30



     
      

     

a a duu u

u u u
                                                                                                                             

Stability of 2 1 1 2 3: , 0, 0  E N k N N  

In this state, the basic equations can be linearized,  we get 
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 31 2
1 1 2 2 13 1 3 3;  ;      

dudu du
a u a u a k d u

dt dt dt
                                                                                (13)                                                                                 

The characteristic roots are 1 2 13 1 3,  and  a a a k d .  Since one of these three roots is positive, hence the 

state is unstable and the solutions are 
13 1 31 2 ( )

1 10 2 20 3 30;  ;  
  

a k d ta t a tu u e u u e u u e                                                                                          (14)                                                                 

The trajectories in the 1 2u u  and 
2 3u u planes are given by 

1 2 13 1 3

1 1 1

31 2

10 20 30


     

      
     

a a a k duu u

u u u
                                                                                                                          

Stability of 3 1 2 2 3: 0, , 0  E N N k N  

The basic equations can be linearized, we get 

 31 2
1 1 2 2 23 2 3 3;  ;      

dudu du
a u a u a k d u

dt dt dt
                                                                               (15)                                                             

The characteristic roots are  1 2 23 2 3,  and  a a a k d . Since one of these three roots is positive, hence the 

state is unstable. The equations (15) yield the solutions,  
23 2 31 2 ( )

1 10 2 20 3 30;  ;  
  

a k d ta t a tu u e u u e u u e                                                                                         (16)                                                   

The trajectories in the 1 2u u  and 2 3u u planes are  

1 2 23 2 3

1 1 1

31 2

10 20 30


     

      
     

a a a k duu u

u u u
                                                                                                                             

Stability of 4 1 2 3 3: 0, 0,   E N N N e  

In this state, the basic equations can be linearized,  we have 

31 2
1 1 2 2 13 3 1 23 3 2 3 3;  ;       

dudu du
a u a u a e u a e u d u

dt dt dt
                                                                 (17)                                           

The characteristic roots are 1 2 3, , a a d . Since all the three roots are positive, hence the state is unstable. 

The equations (17) yield the solutions, 

  31 2 1 2

1 10 2 20 3 1 10 2 20 30 1 10 2 20; ;      
d ta t a t a t a tu u e u u e u Au e A u e u Au A u e                                    (18)                                    

Where   13 3 23 3
1 2

3 1 3 2

;   
 

a e a e
A A

d a d a
; with 3 1 2,d a a                                                                         (19) 

The trajectories in the 1 2u u  and 2 3u u planes are given by 

2 1

1 2

10 20

   
   

   

a a

u u

u u
;  

31

2 2
2 2

3 1 10 2 2 30 1 10 2 20

20 20

   
       

   

da

a au u
u Au A u u Au A u

u u
                                                  

Stability of 5 1 1 2 2 3: , , 0  E N k N k N  

In this state, the basic equations can be linearized,  we have 

 31 2
1 1 2 2 13 1 23 2 3 3;  ;        

dudu du
a u a u a k a k d u

dt dt dt
                                                                (20) 

The characteristic roots are 1 2 13 1 23 2 3,  and    a a a k a k d . 

Case I :   When 13 1 23 2 3 a k a k d  
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In this case, one of  the  three  roots is positive, hence  the state is unstable. The equations (20) yield the 

solutions,                                                                                            
 13 1 23 2 31 2

1 10 2 20 3 30; ;
    

a k a k d ta t a tu u e u u e u u e                                                                                 (21) 

Case II :   When 13 1 23 2 3 a k a k d                                                                                                            

In this case, all the three roots are negative,  hence the state is stable and the equations (20) yield the 

solutions.                                                                               
 13 1 23 2 31 2

1 10 2 20 3 30; ;
     

a k a k d ta t a tu u e u u e u u e                                                                          (22)                                    

It can be noticed that 1 20, 0u u   and  3 0u   as t   

Case III :   When 13 1 23 2 3 a k a k d  

In this case the state is neutrally stable and the solution curves of (20) are given by 
1 2

1 10 2 20 3 30; ;   a t a tu u e u u e u u                                                                                                       (23)  

The trajectories in the 1 2u u  and 2 3u u planes are given by 

1 2 13 1 23 2 3

1 1 1

31 2

10 20 30

 
      

      
     

a a a k a k duu u

u u u
                                                                                                                 

Stability of 13 1
6 1 1 2 3 3

33

: , 0,   
a k

E N k N N e
a

 

In this state, the basic equations can be quasi-linearized, we have  

     3 13 231 2
1 1 2 2 13 1 3 1 13 1 3 2 3 13 1 3

33 33

; ;        
du a adu du

a u a u a k d u a k d u d a k u
dt dt dt a a

               (24) The 

characteristic roots are  1 2 3 13 1,  and  a a d a k . Since one of these three roots is positive, hence the state 

is unstable. The equations (24) yield the solutions,  

  3 13 11 2 1 2 ( )

1 10 2 20 3 1 10 2 20 30 1 10 2 20; ;
       

d a k ta t a t a t a tu u e u u e u B u e B u e u B u B u e                        (25)                                    

Where  13 3 13 1 23 13 1 3
1 2

33 1 3 13 1 33 13 1 2 3

( ) ( )
;  

( ) ( )

 
 

   

a d a k a a k d
B B

a a d a k a a k a d
                                                              (26)                

With 13 1 1 3 2 13 1 3;     a k a d a a k d                                                                                                     (27)                        

The trajectories in the 1 2u u  and 2 3u u planes are given by 

2 1

1 2

10 20



   
   

   

a a

u u

u u
;  

3 1131

2 2
2 2

3 1 10 2 2 30 1 10 2 20

20 20




   
       

   

d a ka

a au u
u B u B u u B u B u

u u
                                          

Stability of 23 2
7 1 2 2 3 3

33

: 0 , ,   
a k

E N N k N e
a

     

In this state, the basic equations can be quasi-linearized, we get  

     3 13 231 2
1 1 2 2 23 2 3 1 23 2 3 2 3 23 2 3

33 33

; ;        
du a adu du

a u a u a k d u a k d u d a k u
dt dt dt a a

               (28)                              

The characteristic roots are  1 2 3 23 2,  and  a a d a k . Since one of these three roots is positive, hence the 

state is unstable. The equations (28) yield the solutions, 

  3 23 21 2 1 2 ( )

1 10 2 20 3 1 10 2 20 30 1 10 2 20; ;
       

d a k ta t a t a t a tu u e u u e u C u e C u e u C u C u e                       (29) 

Where 13 23 2 3 23 3 23 2
1 2

33 1 23 2 3 33 2 3 23 2

( ) ( )
;  

( ) ( )

 
 

   

a a k d a d a k
C C

a a a k d a a d a k
                                                              (30) 
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With 
1 23 2 3 2 3 23 2;     a a k d a d a k                                                                                                    (31) 

The trajectories in the 
1 2u u  and 

2 3u u planes are given by   

2 1

1 2

10 20



   
   

   

a a

u u

u u
;  

2 3231

2 2
2 2

3 1 10 2 2 30 1 10 2 20

20 20




   
       

   

a k da

a au u
u C u C u u C u C u

u u
                                        

Stability of 13 1 23 2
8 1 1 2 2 3 3

33

: , ,


   
a k a k

E N k N k N e
a

  

In this state, the basic equations can be quasi-linearized, we have 

1 2
1 1 2 2; ;

du du
a u a u

dt dt
   

     3 13 23
13 1 23 2 3 1 13 1 23 2 3 2 3 13 1 23 2 3

33 33

du a a
a k a k d u a k a k d u d a k a k u

dt a a
                             (32) 

The characteristic roots are 1 2 3 13 1 23 2,  and    a a d a k a k . 

Case I : When 3 13 1 23 2 d a k a k   

In this case,  one of the  three  roots is positive,  hence the state is unstable.  The equations  (32)  yield the 

solutions,      

  3 13 1 23 21 2 1 2 ( )

1 10 2 20 3 1 10 2 20 30 1 10 2 20; ;
          

d a k a k ta t a t a t a tu u e u u e u Du e D u e u Du D u e           (33) 

Where 13 13 1 23 2 3 23 13 1 23 2 3
1 2

33 13 1 23 2 1 3 33 13 1 23 2 2 3

( ) ( )
;  

( ) ( )

   
 

     

a a k a k d a a k a k d
D D

a a k a k a d a a k a k a d
                                    (34)                                   

 

With 13 1 23 2 1 3 13 1 23 2 2 3;       a k a k a d a k a k a d                                                                             (35)                                            

Case II :   When 3 13 1 23 2 d a k a k  

In this case,  all the  three  roots  are negative,  hence the  state is stable and  the equations  (32)  yield the 

solutions,                         

  3 13 1 23 21 2 1 2 ( )

1 10 2 20 3 1 10 2 20 30 1 10 2 20; ;
          

d a k a k ta t a t a t a tu u e u u e u Du e D u e u Du D u e            (36)  

 

It can be noticed that 1 20, 0u u   and  3 0u   as t   

Case III :   When 3 13 1 23 2 d a k a k                                                                                                                              

In this case, the state is neutrally stable and the solution curves of (32) are given by 
1 2

1 10 2 20 3 30; ;   a t a tu u e u u e u u                                                                                                      (37)  

The trajectories in the 1 2u u  and 2 3u u planes are given by 

2 1

1 2

10 20

   
   

   

a a

u u

u u
;  

13 1 2 3231

2 2
2 2

3 1 10 2 2 30 1 10 2 20

20 20

 

   
       

   

a k a k da

a au u
u D u D u u D u D u

u u
 

Liapunov’s Function for Global Stability 

We discussed the local stability of all eight equilibrium states. From which only two states E5  and  E8 are      

stable and rest of them are unstable.  We now examine the global stability of  dynamical system  (1),  (2) 
and (3) at these states by suitable Liapunov’s functions. 

Theorem 1: The equilibrium state  5 1 2, , 0E k k  is globally asymptotically stable.  

Proof: Let us consider the following Liapunov’s function 
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  1 2
1 2 1 1 1 2 2 2

1 2

, ln ln
    

         
    

N N
L N N N N N N N N

N N
                                                         

Now, the time derivative of L, along with solutions of (1) and (2) can be written as, 

1 1 1 2 2 2

1 2

    
    
   

N N dN N N dNdL

dt N dt N dt
                                     

     1 1 11 1 11 1 2 2 22 2 22 2     
dL

N N a N a N N N a N a N
dt

 

   
2 2

11 1 1 22 2 2 0      
 

dL
a N N a N N

dt
                                                                                                         

Hence, the steady state is globally asymptotically stable. 

Theorem 2: The equilibrium state  8 1 2 3, ,E N N N  is globally asymptotically stable.                                                

Proof: Let us consider the following Liapunov’s function 

  31 2
1 2 3 1 1 1 1 2 2 2 2 3 3 3

1 2 3

, , ln ln ln
       

               
        

NN N
L N N N N N N l N N N l N N N

N N N
  

where 1l  and 2l  are suitable constants to be determined in the subsequent steps.                                                                                        

Now, the time derivative of L, along with solutions of the equations (1) - (3) can be written as, 

3 3 31 1 1 2 2 2
1 2

1 2 3

      
       
     

N N dNN N dN N N dNdL
l l

dt N dt N dt N dt
 

        1 1 1 11 1 1 2 2 2 22 2 2 3 3 3 33 3 13 1 23 2           N N a a N l N N a a N l N N d a N a N a N  

           
2 2

11 1 1 22 1 2 2 2 3 3 13 1 1 23 2 2 33 3 3
             a N N a l N N l N N a N N a N N a N N  

Choosing  

2

11 23 11 33
1 22 2

22 13 13

4
0,  0   

a a a a
l l

a a a
 and with some algebraic manipulation, we get  

     
2

23
11 1 1 2 2 3 3

13 13

2
0

 
        

 

adL
a N N N N N N

dt a a
, when 1 2 2 1  N N N N     

Hence, the steady state is globally asymptotically stable. 
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Figure 1:  Variation of population against time for N10=0.88, N20=5.24, N30=2.6 
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Figure 2:  Variation of population against time for N10=2.32, N20=3.28, N30=4.56 
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Figure 3:  Variation of population against time for N10=6.68, N20=3.08, N30=1.44 

 

A Numerical Approach of the Growth Rate Equations 

The numerical solutions of the growth rate equations (1)-(3) computed employing the fourth order Runge-

Kutta method. The results are illustrated in Figures 1 to 6. Let us consider the fixed parameters as, a1=2.3, 
a2=2.72, d3=1.572, a11=1.28, a22=1.3,  a33 =2.1, a12=6.16, a13=0.7, a23=1.2. 

Observations of the above Graphs 

Case 1: In this case the first species has the least initial value. Initially the third species dominates over the 

first till the time instant * 0.61t   and thereafter the dominance is reversed. This is illustrated in Figure 1. 

Case 2: In this case the initial values of S1, S2, S3 are in increasing order. Initially the third species  

dominates over the second and first till the time instant  * 0.18t   and * 0.32t   and thereafter the 

dominance is reversed. Further it is evident that all the three species asymptotically converge to the 

equilibrium point as shown in Figure 2. 

Case 3: In this case the initial values of S1, S2, S3 are in decreasing order. The first species dominates over 

the second initially up to the time * 0.62t    after which the dominance is reversed. In course of time we 

notice a steady variation with no appreciable growth rate in all the three species (Figure 3).       
 

CONCLUSION 
The present paper deals with an investigation on the stability of a syn eco-system consisting of two hosts 
and one commensal with mortality rate for the third species. In this paper we established all possible 

equilibrium states. It is conclude that, in all eight equilibrium states, only the two states E5 and E8 are 
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stable. Further the global stability is established with the help of suitable Liapunov’s function and the 

numerical solutions are computed using  Runge-Kutta fourth order method. 
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