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ABSTRACT
The non-homogeneous Quintic equation with five unknowns given by

x4 —y4 +2(x2 —y2)(x—y)2 :14(22 —W2)p3 is considered and analyzed for its non— zero distinct

integer solutions. A few interesting relations between the solutions and special numbers namely

Polygonal numbers, Pyramidal numbers, Stella octangular numbers, octahedral numbers, rhombic
dodecagonal numbers are presented.
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Notations

Special numbers Notations Definitions

Regular Polygonal Number tm.n n(1+ %;—Z)J

Octahedral Number OH, én(Zn 2 +1)

Stella Octangular Number SO, n(2n2 -1

Rhombic Dodecagonal Number RD, (2n=1)(2n 2 _2n +1)
n(n+1

Pyramidal Number P (n+1) (m=2)n+(5-n))

6

INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, Quintic
equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians
since antiquity (Dickson, 1952; Mordell, 1969). For illustration, one may refer (Gopalan and
Vijayashankar, 2010; Gopalan and Vijayashankar, 2010; Gopalan et al., 2013) for Quintic equation with
three unknowns and (Gopalan and Vijayashankar, 2011; Gopalan and Vijayashankar, Gopalan et al.,
2013; Gopalan et al., 2013; Gopalan et al., 2013; Vidhyalakshmi et al., 2013; Vidhyalakshmi et al., 2013)
for Quintic equation with five unknowns. This paper concerns with the problem of the non-homogeneous

Quintic equation with five unknowns given by x4 —y4 +2(x2 —yz)(x—y)2 :14(22 —W2)p3. A
few relations among the solutions are presented.

Method of Analysis
The non-homogeneous quintic equation with 5 unknowns to be solved is given by

x4 -yt +2(x? —y?)(x-y)? =14(2% ~w?)p® M
Assume X=U+V,y=U-V,Z=2U+V and W=2U—V @)
Substituting (2) in (1), it leads to
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u? +5v2 =14p3 (3)

(3) is solved through different approaches and different patterns of solutions of (1) obtained are presented
below

Pattern-1
Assumepza2 +5b? 4)
where a and b are non-zero distinct integers.
Write 14 as 14 = (3+iv/5)(3—i/5) ©)
Using (4) & (5) in (3) and employing the method of factorization, define
U+iv5v = (3+iv/5)(a +ivEb)3 ©)
Equating the real and imaginary parts of (6), we get
u=3a%-15a°b—45ah? +25b° @
v=a®+9a%b—15ab2 —15p°> ®)
Substituting (7) and (8) in (2), the integral solutions of (1) are given by
x(a,b) = x = 4a° —6a%b—60ab? +10b° 9)
y(a,b) =y =2a° —24a°b—30ab? +40b> (10)
z(a,b) =z =7a% - 21a®°b-105ah? +35b° (12)
w(a, b) =w =5a° —39a%b—75ab? + 65b°> (12)
along with (4)
Properties
. y(L n) +w(L n)—2(L n)—420H,, +14S0 , —28P3 + 28t3,, =0(mod 2)
. X(Ln) +y(L n) +2(L n) +w(L n)—37RD, —4P; +100t3 , =—1(mod 8)

. x(n,)) -RD, =11(mod 64)
o 4y(a,b)+z(a,b)—3w(a,b) =0
. 64y°>(a, b) +z3(a, b) — 27w (a, b) + 36y(a, b)z(a, b)w(a, b) =0
Note 1
In (2), the representations of z and w may be taken as
z=2uv+1l, w=2uv-1 (13)
In this case, the values of z and w are given by

z(a,b) =z =6a% +24a°b—450a*b? - 400a°pb> +2250a°b* +600ab® —7500% +1  (14)

w(a, b) =w = 6a® + 24a%h - 450a*b? — 400a3b3 + 2250a°b* +600ab° —7500°% —1  (15)
Thus (9), (10), (14), (15) and (4) represent a different set of solutions to (1)
Note 2
Observe that z and w in (2) may also be taken as

Z=Uuv+2, wW=uv-2 (16)
For this choice, the corresponding values of z and w are obtained as

z(a,b) =z =3a% +12a°h - 225a%b? — 200a3b3 +1125a°b* +300ab°® —375h° +2 (17)
w(a, b) =w =3a® +12a°b-225a%h? - 200a3b> +1125a°b* +300ab° —375b° -2 (19)
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Thus (9), (10), (17), (18) and (4) represent an another set of integer solutions to (1)
Pattern-2

Instead of (5), write 14 as

14 = (=3+i/5)(-3-i/5)

Following the procedure presented in pattern-1, the corresponding integer solutions of (1) are

x(a, b) = x = —2a® — 24a°p+30ab? + 4003 (19)
y(a,b) =y =—4a° —6a%b+60ab? +10b° (20)
2(a,b) =z =-5a° —39a°b+ 75ab ? +65b3 1)

w(a, b) =w = -7a° —21a%b +105ab? +35h3 22)
along with (4)

Note 3

For the choices of z and w given by (13) and (16), the corresponding two sets (I and Il) of values of z and
w are as follows:

Setl:

z(a,b) =z = —6a® + 24a°b + 450a*b? — 400a3b — 2250a°b* +600ab° + 7500° +1
w(a, b) =w =—6a® + 24a°b + 450a*b? — 400a3b3 — 2250a%h* +600ab° + 750b° —1
Set II:

z(a,b) =z =-3a% +12a%b + 225a%b? — 200a3b3 —1125a°b* +300ab° +375h° +2
w(a, b) =w =-3a® +12a°b +225a*b? — 200a3b3 —1125a°b* +300ab° +375b% -2

Considering (19), (20), (4) with the above sets, we have two more choices of integer solutions to (1)
Pattern-3

(3) can be written as u? +4v?2 :14p3 *1 23)

Write 14 as 14 = (3+iv5)(3-i/5) 24)

0 1a 1- (1+i4+/5)(1-i4/5) (25)
81

Using (4),(24) & (25) in (23) and employing the method of factorization, define
. . . 1+i4+/5
u+ivBv = (3+iv/5)(a+i/Bb)3 (1+1475) 9\/—)
Equating the real and imaginary parts, we get

u= % (-17a% —195a%b + 255ab ? +325b°)

V= % (1323 —51a%b—-195ab? +85b%)
Replacing a by 3a and b by 3b in the above set of equations and in (4) the values of u, v and p becomes,
u=-51a° —585a2h + 765ab? +975b>
v=39a® ~153a2h—585ab? +255h°
p= 9a? +45b? (26)
Hence in view of (2), the integral solutions of (1) are given by
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x(a,b) = x =-12a° —738a°b +180ab? +1230b3 @7)
y(a,b) = y = —90a° — 432ab +1350ab? + 720b> (28)
z(a,b) =z = —63a° —1323a%b +945ab? +2205b3 (29)
w(a, b) =w = -141a% —1017a®b + 2115ab? +1695b> (30)
along with (26)
Properties

. x(a, b) +w(a, b)— y(a, b) — z(a,b) = 0
. 2x(a, b) +2y(a, b) — z(a, b) —w(a, b) = 0
. x(a, b) +3y(a, b) — 2w(a, b) = 0

. x3(a, b) +27y3(a, b) —8w3 (a, b) +18x(a, b)y(a, b)w(a, b) =0
. 3x(a, b) + y(a, b) — 2z(a, b) = 0

. 27x3(a, b) +3y>(a, b) —82> (a, b) +18x(a, b)y(a, b)z(a,b) =0

Note 4

For the choices of z and w given by (13) and (16), the corresponding two sets (I and Il) of values of z and
w are as follows:

Setl:

z(a,b) =z =-3978a°® —30024a°b + 298350a *b? +500400a°b* —14917500a°b* — 750600ab° + 497250b° +1
w(a,b) = w = —3978a° —30024a°b + 298350a"*b? + 500400a°0® —14917500a°b* — 750600ab° + 497250b° —1
Set II:

z(a,b) = z = —1989a° —15012a°b +149175ab* + 250200a°b* — 745875a°b* — 375300ab° + 248625h° + 2

w(a,b) = w = —1989a° —15012a°b +149175a*b* + 250200a°b® — 745875a°b* — 375300ab° + 2486250° — 2

Considering (26), (27), (28) with the above sets, we have two more choices of integer solutions to (1)
Pattern-4
Instead of (17), write 1 as

1

_ (2+iV5)(2-iv/5)
9

Following the procedure presented in pattern-3, the corresponding integer solutions of (1) are

x(a, b) = x =54a° —648a%b —810ab? +1080b°> (31)

y(a,b) =y =—36a° — 702a%b +540ab? +1170b> (32)

2(a,b) =z =63a° —1323a°b—945ab2 + 22050 (33)
w(a, b) =w =-27a3 —1377a°b + 405ab? +2295h3 (34)

along with (26)

Note 5

For the choices of z and w given by (13) and (16), the corresponding two sets (I and Il) of values of z and
w are as follows:

Set I:
z(a,b) = z = 810a® — 60264a°b — 60750a*b? +1004400a3p° + 303750a%b* —1506600ab° —1012500° +1
w(a,b) = w =810a° —60264a°b — 60750a*b?* +1004400a°b? + 303750a’b* —1506600ab° —101250b° —1
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Set II:
z(a,b)=z= 405a°® —30132a°b —30375a*b? + 502200a°b® + 151875a°b* — 753300ab’® — 50625b° + 2

w(a,b) = w = 405a° —30132a°b — 30375a“b* +502200a°b* +151875a°b* — 753300ab° — 50625h° — 2

Considering (26), (31), (32) with the above sets, we have two more choices of integer solutions to (1)
Pattern-5
Also (17) can be written as

L (2 i35)(2—i31/5)

Following the procedure as presented zj)%ve, the values of x,y,z,w and p are given by

x(a, b) = x = 98a> —9408a°h —1470ab? +15680b°> (35)

y(a,b) =y =—980a° — 6762ab +14700ab? +11270b> (36)

z(a,b) =z =-343a% —17493a°b + 5145ab? +29155h3 (37)
w(a, b) =w = -1421a3 —14847a°b + 21315ab > + 24745b° (38)

p(a,b)=p= 49a? +245h2 (39)

Note 6

For the choices of z and w given by (13) and (16), the corresponding two sets (I and Il) of values of z and
w are as follows:

Setl:

z(a,b) = z = -475398a% — 7548744a°p + 35654850a*h? +125812400a°%0°

—178274250a%b* —188718600ah° +59424750b° +1
w(a,b) = w = —475398a° — 7548744a°b + 35654850a*b? +125812400a°p>
—178274250a°b* —188718600ah° + 5942475008 —1
Set II:
z(a,b) = z = —237699a® — 3774372a% +17827425a*b? + 62906200a°0°

—89137125ab* —94359300ab° + 29712375b° + 2
w(a,b) = w = —237699a® — 3774372a°%b +17827425a*b? + 62906200a°0°

—89137125a%b* —94359300ab° + 297123750° — 2
Considering (35), (36), (39) with the above sets, we have two more choices of integer solutions to (1).

CONCLUSION

In this paper, we have illustrated different methods of obtaining non-zero integer solutions to the Quintic
equation with 5 unknowns given by x4 —y4 - 2(X2 —y2)(x —y)2 :14(22 —W2)p3. As the Quintic
Diophantine equation are rich in variety one may consider other forms of Quintic equation with variable
> 5 and search for their corresponding integer solutions along with the corresponding properties.
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