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ABSTRACT

The cubic Diophantine equation with five unknowns represented by
XX+ Y +(X+y)(X—Yy)* =16p*(z+W) is analyzed for its patterns of non — zero distinct integral
solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.
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INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, cubic
equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians
since antiquity (Dickson, 1952; Mordell, 1969; Carmichael, 1959). For illustration, one may refer
(Gopalan and Premalatha, 2009; Gopalan and Pandichelvi, 2010; Gopalan and Sivagami, 2010; Gopalan
and Premalatha, 2010; Gopalan and KaligaRani, 2010; Gopalan and Premalatha, 2010; Gopalan et al.,
2012; Gopalan et al., 2012; Gopalan et al., 2012) for homogeneous and non-homogeneous cubic
equations with three, four and five unknowns. This paper concerns with the problem of determining non-
trivial integral solution of the non- homogeneous cubic equation with five unknowns given by

X2+ V2 +(x+ y)(x—y)* =16 p*(z + W) .A few relations between the solutions and the special numbers

are presented.
Notations Used

e tymn - Polygonal number of rank nwith sizem.

o Prr]n - Pyramidal number of rank nwith sizem.
e Ong - Gnomonic number of rank a

e J, - Jacobsthal number of rank n

e j, - Jacobsthal-Lucas number of rank n

Method of Analysis
The cubic Diophantine equation with five unknowns to be solved for its non-zero distinct integral
solutions is given by

X*+ Y+ (x+y)(x—y)* =16p*(z+W) )
Introducing the linear transformations
X=U+V,y=U-V,Z=U+S,w=u-S 2)
in (1), leads to
u®+7v? =16p? 3)
We present below different methods of solving (3) and thus obtain different patterns of integral solutions
to (1).
Pattern-I
Assume P = p(a,b)=a*+7b* ()

where a and b are non zero distinct integers.
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Write 16 as 16 = (3+ix7)(3-iv/7) (5)
Substituting (4) & (5) in (3) and employing factorization, define

(U+iV7v) = B+iNT)(a+iV7h)?

Equating the real and imaginary parts, we have

u=u(a,b)=3a’-21b* —14ab

v=v(a,b) =a*—7b* +6ab

Hence in view of (2) and (4), the non-zero distinct integral solutions of (1) are
x = x(a,b) = 4a* — 28b* —8ab

y = y(a,b) = 2a® —14b* — 20ab

z=1(a,b,S)=3a’—21b* —14ab+S
w=w(a,b,S)=3a*-21b*-14ab-S

p=p(ab)=a’+7b

Properties

1. x(a,1)-t,, =-3(mod5)
2. x(a,1)+z(a,1,52) =3(mod16)
3. y(-a,1)—4t,, =4(mod18)
4. y(@,1)—t;, =5(mod19)
5. y(@,)+w(a1,-35)-t,, +30a=0
6. X(-a,1)-8t,,—4a+j;—J; =0

7. —-Ix(a,a) p(a,a)]is a bi quadratic integer.
Pattern-11

Instead of (5), write 16 as 16 = (-3+iv/7)(-3-i7)
Following the procedure similar to pattern-I, the corresponding non-zero distinct integer solutions of (1)
are found to be

X = x(a,b) = —2a’ +14b* — 20ab

y = y(a,b) = —4a® + 28b* + 8ab

z=1(a,b,S)=-3a’ +21b° ~14ab+S
w=w(a,b,S)=-3a*+21b* —-14ab—-S

p = p(a,b)=a’+7b?

Properties

1. y(@2a-1)-2x(2a-1)—-32gn, =0

2. 3p(a,a+1)—-z(a,a+1,S)-6t,,—28t,, +S=0
3. 4z(a,b,S*)—w(a,b,S*)] is a cubical integer.
4. y(6a,a-1)—-2x(6a,a-1)—-32S, + j,+J, =0
Pattern-111

Rewrite (3) as U* =16 p® —7v? (6)
Introducing the linear transformations

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) m



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2015 Vol. 5 (1) January-March, pp. 59-63/Gopalan et al.

Review Article
p=X+7T,v=X+16T (7
in (6) , it leads to
u> =9X?+(-9)112T°2
Replacing u by 3U, we get (8)
X?=112T*+U? 9)
which is satisfied by
T=2rs
U =112r? -5’
X =112r% + ¢
In view of (7) & (8) , we have
u=336r>-3s
p=112r% +s* +14rs
v=112r% +s° +32rs
Substituting the values of u, v and p in (2), the corresponding non-zero integer solutions are given by
x = x(r,s) = 448r° — 2s* +32rs
y = y(r,s) = 224r* —4s* —32rs
z=1(r,s,5)=336r>-3s*+S
w=w(r,s,S)=336r>-3s*-S
p=p(r,s)=112r> +s* +14rs
Properties
1. x(r,1)-448t, =-2(mod32)
2. y(r,h)-t,, =-4(mod19])
3. x(r,r)—2y(r,r)-96t, isanasty number.
Each of the following expressions represents the perfect square:
1. 3x(r,))—-2z(r,1,5)-192t,, +2S
2. X(s,s)—y(s,s)—J,
Multiplying each of the above by 6, we obtain Nasty number.
Note 1
The linear transformation (7) can also be taken as
p=X-7T,v=X-16T
By following the procedure as in the above pattern, we get the non-zero distinct integer solutions are
given by

X = Xx(r,s) = 448r* — 2s* —32rs
y = y(r,s) = 224r* — 4s* + 32rs
z=1(r,s,S)=336r*-3s*+S

w=w(r,s,S)=336r>-3s*-S

p=p(r,s)=112r? +s*> —14rs
Pattern-1V
Equation (9) can be written in the form X* —-U? =112T?

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2015 Vol. 5 (1) January-March, pp. 59-63/Gopalan et al.

Review Article

Define (X +U)(X -U)=112T* (10)
_ T2
Now consider X+U=T
X -U =112
Solving the above two equations, we obtain
T?+112
2
T?-112
2
Since our interest is on finding integer solutions, it is noted that the values of X & U are integers when T
is even.
In other words, choosing T=2k and proceeding as in pattern-11l the corresponding non-zero integer
solutions are

x = X(k) =8k*+32k —112

y = y(k) = 4k? —32k — 224

z=12(k,S)=6k*-168+S

w=w(k,S)=6k*-168-S

p = p(k) = 2k? +14k +56
Properties

The following expressions represent the nasty number:
1. 2x(1)+2y@Q)+672

2. x()—2y(1)-336
3. 4p()—x()—-336

X =

U=

Each of the following expressions represents a perfect square:
1. p@)—x@)
2. {z(k,S)+w(k,S)]+12t, 12

Note 2
The system (10) can also be written as

X +U =272
X -U =56
Following the procedure similar to pattern-1V, the corresponding integral solutions are obtained to be
X=X(T)=4T?+16T —56
y=y(T)=2T?-16T -112
z=12(T,S)=3T°-84+S
w=w(T,S)=3T>-84-S
p=pM)=T*+7T +28

Note 3

Rewrite (10),
X +U =8T?
X-U=14

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2015 Vol. 5 (1) January-March, pp. 59-63/Gopalan et al.

Review Article
By repeating the process as in pattern-1V, the non-zero distinct integer solutions are found to be
X=x(T)=16T? +16T —14
y=y(T)=8T*-16T - 28
z=12(T,S)=12T?-21+S5S
w=w(T,S)=12T?-21-S
P=pT)=4T* +7T +7

CONCLUSION
To conclude, one may search for other patterns of integral solutions of (1).
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