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ABSTRACT 

The thermodynamic properties of a hard-sphere assembly of fermions in which the 
3
He atoms are 

assumed to be interacting via a hard-sphere interaction has been calculated. The variation of energy per 

particle  
N

E  with temperature T is non-linear due to the thermal factor, but becomes insignificantly 

minimal at low temperatures below 4 K due to zero-point effects becoming visible. The specific heat Cv 

increases with increase in temperature to a point of inflection at a transition temperature Tc = 18.67 K and 

this value closely compares well with Tc = 20.3 K calculated using the Fermi energy formulation. This 
result indicates that, a hard-sphere Fermi gas of 

3
He will undergo a phase transition at Tc = 18.67 K. 
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INTRODUCTION 
Fermions have half-integral spin and constitute the second half of the particles family. To tell whether an 

atom is a fermion we look at the total number of protons, neutrons, and electrons making up that atom. 

Since these are all spin 
2

1 fermions adding up an odd number of them will make an atom a fermion (half 

integer spin). Fermions obey the Pauli Exclusion Principle. This means that two indistinguishable 

fermions can never occupy the same quantum state.  

Instead, in the limit of absolute zero temperature they fill the lowest energy states with exactly one atom 
per state in an arrangement known as the Fermi sea.  

All energy states up to the Fermi energy FE  are filled with particles in two different spin states. Such a 

Fermi sea is not superfluid and the assembly of fermions will be effectively a non-interacting system of 

particles. Fermi gas forms a useful first approximation in the theory of metals, in the theory of He3
, in 

studies of nuclear structure, nuclear matter and neutron stars.  

To understand the behavior of such many-body assemblies composed of fermions, some interaction must 

be included between the particles. In this manuscript it is assumed that the interaction between two 

fermions in the system is a hard-sphere interaction.  

It should also be understood that in the long wavelength limit only s-wave scattering is considered, and 

for hard-sphere gas the scattering length „a‟ is just the hard-sphere diameter (Beliaev, 1958). 

A hard-sphere system of fermions with density ranging from very low to very high will be considered to 

obtain an expression for the energy per particle  
N

E . For fermions, we need to satisfy Pauli exclusion 

principle which leads to repulsion between fermions when they try to approach each other to occupy the 

same energy state.  

A gas or liquid composed of He3
is a well known assembly of fermions in which particles can be 

assumed to interact via the pairwise potential (Aziz et al., 1979), and the energy of such a system can be 

calculated. Neutron matter and nuclear matter are other systems of fermions. 

For an N-identical fermion system, the energy E is given by (Baker, 1971) for a low-density system, 
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where the (Baker et al., 1982) sC j '  9,.....2,1j , for 2v and 4v , are dimensionless co-efficients 

depending on v , which is the number of intrinsic degrees of freedom of each fermion. For instance, for

,4v 556610.02 C  and 9C is not available for 4v . The Fermi-momentum F in terms of the 

fermion number density  is given by, 






6

3

Fv

V

N
            2 

where, V is the volume of the system. The quantities a, r0 and  01A are parameters containing 

information related to two-body scattering due to a central potential  rU . Whereas,  0''

0A cannot be 

related to the scattering phase shift alone, but is potential-shape dependent and can thus be interpreted as 

the first correction to the static limit, while 9C  has a three-body cluster contribution.  

In fact, the low density expansion given in Eqn (1) breaks down at moderate and high densities including 

the saturation liquid density of He3
and nuclear matter. 

For fermion hard-sphere system Eqn (1) can be re-written as, 

  xe
mN

E F
0

22

25

3 
           3 

Where 0 Fx   and 0  is the hard-core diameter. Now  xe0 can be written as, 
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For 2v  , the value of (Baker, 1971; Baker et al., 1982) 06 C and Eqn (4) simplifies to, 
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for 1x , with the D‟s expressible in terms of the C‟s. The ultimate aim is to calculate the value of 

N
E for very high densities when the system of hard-spheres of fermions will go to close packing (cp); it 

does not matter whether the packing is random or regular. But it should be understood that the regular cp 

will be face-centered-cubic, fcc, or hexagonal-close-packing, hcp. 

Theory 

Ultimately, the value of 
N

E
 
has to be calculated from Eqn (3). This requires that the function   xe0  

should not have a zero in its denominator since that will make the energy diverge. We have to work in the 

region of physical interest, and that is the one in which ,47.30  x  and in this region the energy does 

not diverge at any close packing. However, the value of  xe0 will be approximated as (Solis et al., 2008), 
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For [4] 2v  (two degrees of freedom for the fermions), 384.0;185.0;353.0 321  CCC    
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Here 0 Fx  where 0 = 2.1117 is the hard-core diameter for 
3
He. Similarly, [5] for 4v  (four 

degrees of freedom) .3006.1;5566.0;0610.1 321  CCC  

The general expression for F  via the Fermi energy F (Khanna, 1986) is given by, 
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or   

 3
1

23  F

           8 
 

Where in our case the mass m is for 
3
He atom, and ρ =0.86ρ0. But for cp or hcp, ρ  in Eqn (8) may be 

replaced by 3

0
0

2


 
 where the assembly may have reached the crystalline state. 

For hpc or fcc, the value of N
E

 is given by (Rhen and Llano, 1989),  
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With  Nv , in the low density limit,  
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Another expression for energy per particle that has been used for 
3
He is given in Eqn (3) (Panoff, 1990; 

Panoff and Carlson, 1989).  

The value of the total energy E can be obtained from Eqn (13) since all the parameters in Eqn (13) are 

known. In the limit of small ρ (ρ →0), let E be represented by E0. To understand the temperature 

dependence of the energy E, specific heat Cv, entropy S and the transition temperature Tc; E0 will be 

multiplied by the thermal activation factor τ, such that, 
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where kB is the Boltzmann constant. 

And the total energy E may be written as, 
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The specific heat vC  becomes, 
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The entropy S becomes, 
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The transition temperature Tc will be given by, 
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For cTT   in Eqn (19), we get, 

  

K
E

T
B

c 67.18
2

0 


          21 

   
Tc will be the temperature at which phase transition can take place in a system of hard-sphere gas of 

fermions (
3
He). 

Calculations 

To do calculations for a system composed of 
3
He atoms, v =2, Qv is given by Eqn (11),

3

0

2
86.0


   but 

0  = 2.1117Å, and assuming N to be the number of particles in the unit volume, then N . 

The mass of 
3
He atom m = 3.0160293 x10

-24
g,  

Eqn (13) will be used to get the value of E0 and Eqn (15) for E. Specific heat Cv will be calculated from 
Eqn (16), entropy S from Eqn (18) and the transition temperature Tc using Eqn (21). 
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RESULTS AND DISCUSSION 

 

 
Figure 1: Energy variation with Temperature 

 

 
Figure 2: Specific Heat variation with Temperature 
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Figure 3: Entropy variation with Temperature 

 

The calculations done for E, Cv and S are plotted in Figure 1, Figure 2 and Figure 3 respectively. Figure 1 

shows that the energy E of the system increases as T increases, and this is what it should be 

thermodynamically. Figure 2 shows the variation of Cv with T, and as T increases, the value of Cv shows a 
point of inflection at a temperature Tc called the critical or transition temperature, and the value of Tc = 

18.67 K. According to this calculation, a gas of 
3
He will undergo a phase transition at Tc = 18.67 K 

provided the 
3
He atoms are assumed to be interacting via a hard-sphere interaction. Such an interaction is 

characterized by the s-wave scattering length “a” (hard-core diameter = 0 ). Mean-field theory gives a 

relation (Holland et al., 2001; Leggett, 1980; Heiselberg, 2000) between Tc and the Fermi temperature TF 
such that, 
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The Fermi temperature for fermions is, 
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Where the momentum vector,  3
1

23  F , and giving the value 30.30 F . Since for the 
3
He 

hard-sphere gas, the values of F0  
may lie between 0 and 3.47, in Eqn (19) using 30.30 F , the 

value of Tc = 20.3 K. This transition temperature closely compares with our calculated value of 18.67K. 
The variation of Cv with T in Fig. 2 qualitatively agrees with the variation of Cv with T (Mishra and 

Ramakrishnan, 1985). 

Our calculations lead to the conclusion that an assembly of hard-sphere 
3
He can undergo a phase 

transition at a transition temperature Tc = 18.67 K. 
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