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ABSTRACT 

In this paper we have obtained exact solutions of the field equations for Bianchi type-III space times with 

variable gravitational constant G(t) and cosmological constant 
)(t

in the presence of perfect fluid. We 

have discussed physical behavior of the model in detail. Also the model satisfies a Machian cosmological 

solution, i.e. 
2~ HG  which follows from the model of Kalligas et al., (1992). 
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INTRODUCTION 

The Einstein field equations have two parameters, the gravitational constant G and the cosmological 

constant Λ. The Newtonian constant of gravitation G plays the role of a coupling constant between 

geometry and matter in the Einstein field equation. In an evolving universe, it is natural to look at this 

constant as a function of time. Dirac (1937, 1937, 1938, 1975) suggested a possible time varying 

gravitational constant. The large number hypothesis proposed by Dirac leads to a cosmology where G 

varies with time. Many other extensions of Einstein theory with time-dependent G have also been 

proposed by Hoyle and Narlikar (1964), Canuto et al., (1977a, 1977b) Dersarkissian (1985). The Λ term 

arises naturally in general relativistic quantum field theory where it is interpreted as the energy density of 

the vacuum (Zeldovich, 1967, 1968; Ginzburg et al., 1971; Fulling et al., 1974). The Λ term has also been 

interpreted in terms of the Higgs scalar field by Bergmann. 1968 Dreitlan1974 suggested that the mass of 

the Higgs boson is connected with Λ, and Linde (1974) proposed that Λ is a function of temperature and 

is related to the process of broken symmetries.  

Recently, several models with the Friedman-Robertson-Walker (FRW) metric where G and Λ are the 

functions of the time have been studied. For these models, the energy-momentum tensor is described as a 

perfect fluid (Abdel-Rahman, 1992; Berman, 1991; Abdussattar and Vishwakarma, 1977, 1995, 1996). 

Also Arbab (1997) discussed the bulk viscous models. Beesham (1986a, 1986b) and Kilinc (2006) 

discussed the Bianchi type-I model with variables G and Λ. Wang (2003, 2004, 2005, 2006) studied the 

Bianchi type-III model with bulk viscosity.  

In this paper, we consider space-time of the Bianchi type III model in a general form with variable G and 

Λ. We apply the equation of state p  and scalar of expansion proportional to the shear scalar 

.   
Model and Field Equations 

We consider the Bianchi type-III metric in the form  

,222222222 dzCdyeBdxAdtds x  

        (1) 

Where A, B and C are the function of cosmic time t alone, and  is a constant.  

Einstein’s field equations with variables G and Λ in suitable units are  

ijijijij gGTRgR  8
2

1

          (2) 

The energy momentum tensor for a perfect fluid is  
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  ,ijjiij pgvvpT  
         (3) 

Where   is the energy density of cosmic matter and p is its pressure.  

Einstein’s field equation (2) for the metric (1) leads to 
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where dots on A, B and C denote the ordinary differentiation with respect to t.  

In view of the vanishing divergence of the Einstein tensor,  

Eq. (2) gives  

  0
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We now assume that the law of conservation of energy 
 0; ij

jT
 gives 
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          (10) 

Using Eq. (9) yields  

,
8





G

           (11)  

indicating that G increases or decreases as Λ decrease or increases. We also consider the perfect fluid 

equation of state, 
p            (12) 

where  suggested by Wang (2003) may be defined by  

          (13) 

with rmrm and ,
 being the matter crest mass and radiation energy densities. As the variation 

of (t) is slow as compared with the expansion of the universe, except near the time when matter and 

radiation energy densities are equal, we can approximate 
)(t

 as a step function: 

 



.)(min,0

,)(min,3/1

universeMDateddomatterthein

universeRDateddoradiationthein

      (14) 

From Eq. (9), we have  
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),0(sin  ce
B

B
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A 

         (15) 

which leads to 

,1 BkA
           (16) 

wherek1 is a constant of integration.  

From Eqs. (4) and (6), using Eq. (16), we have  
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Solution of the Field Equations 

There are only six independent equations in the seven unknowns A, B, C, ,,p  G and Λ, an extra 

equation is needed to solve the system completely. We assume that scalar of expansion is proportional to 

the shear scalar 
, 
 which leads to a relation between metric potential 

2CB 
           (18) 

.Using Eqs. (18) and (17), we have  
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         (19) 

Integrating Eq. (19), we obtain  
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          (20) 

wherek3 is constant of integration. With the help of Eqs. (16), (18) and (20), the line element (1) reduces 

to  
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          (21) 

By suitable transformation of coordinates, the line element (21) reduces to 
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          (22) 

For the model (22) the physical and geometrical parameters can be easily obtained. The expressions for 

the energy density ,  gravitational constant G(t), and cosmological constant Λ(t) are given by  
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The expansion scalar   and shear  for the model (22) are  
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For 
,0
 we require 

.04 k
The model has singularity at T = 0. The model starts with 

,,, 
 all 

being infinite and continues to expand till
T

. For this model, the scale factors are zero at T = 0, which 

shows that the space time exhibits point type singularity. Gravitational constant G (t) is zero initially and 

gradually increases and tends to infinity at late times. Since 



= constant, the model does not approach 

isotropy for large values of T. Therefore, the model describes a continuously expanding, shearing, non-

rotating universe with the big-bang start. In this model we observe that the cosmological term   is 

infinite initially, gradually decreases, and becomes zero at late times. 

In the special case of k3 = 0, from Eq. (20) the line element (1) reduces to 
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After suitable transformation Eq. (28) reduces to  
22x222222 dzTdyeTdxTdTds  

      (29) 

The physical and gravitational parameters of the model (29) are  

,constk,

2

5
T

k
5

5 

         (30)  

 
2

15
T

k)1(4

1
)t(G

2






         (31) 

 
  2T

1

14

15
)t(














          (32) 

The shear  and expansion scalar   are given by  
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          (33) 
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Since 
,const





 the model does not approach isotropy. We can obtain the deceleration parameter 

,
5

1
q 2 

which shows that q is constant. The model of constant deceleration parameter has been 

considered by Berman and Som (1990). The Hubble parameter H(T) reads 

,
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          (35) 

Which can be rewritten as 
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          (36) 

For the present phase p,  
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          (37) 

It is evident that negative qp would increases the present age of the universe. From Eq. (31), we obtain  

T

1

2

5

G

G




          (38) 

and the present value is  
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We can find that the quantity G
 satisfies the condition for a Machian cosmological solution i.e. 

,~ 2HG which follows from the model of Kalligas et al., (1992). 

For the energy density to be positive definite, we must have 
.05 k
The energy density decreases as time 

increases and tends to zero as T tends to infinity.  

We also observe that the spatial volume is zero at T = 0. Thus, the singularity exists at T = 0 in the model. 

The gravitational constant G(t) is zero initially and gradually increases and tends to infinity at late times 

provided 
,0n
where as cosmological term 

)(t
varies as square of the age of universe and tends to zero 

as 
.T
 Deceleration parameter is constant for all time. For 

.1,1 00  HTn
This is within the current 

limits for the universe age 
3.18.0 00  HT

 and in good agreement with the best estimation 0 0 1.T H 

(Abdussattar and Vishwakarma, 1997). 

 

CONCLUSION 

In summary, we have obtained exact solutions of the field equations for Bianchi type-III space times with 

variable gravitational constant G (t) and cosmological constant 
)(t

in the presence of perfect fluid. In 

general, the space time exhibits point type singularity at initial stage and gravitational constant is zero but 

cosmological term varies as square of the age of universe. Cosmological term   is infinite at the 

beginning of the model and it decreases to become zero at late times. Deceleration parameter is constant 

for all time. Also the model satisfies a Machian cosmological solution, i.e. 
2~ HG  which follows from 

the model of Kalligas et al., (1992). 
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