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ABSTRACT 

We have investigated the LRS Bianchi type-I cosmological model containing stiff matter with 

cosmological term proportional to Hubble parameter suggested by Schűtzhold (2002a) on the basis of 

quantum field estimation of the vacuum density in an expanding background. We have discussed physical 

behavior of the model in detail. The model asymptotically tends to a deSitter universe. Gravitational 

constant G is constant initially and increases exponentially with time increases. Which is similar result of 

Abdussattar and Vishwakarma (1997). 
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INTRODUCTION  

For simplification and description of large scale behavior of the actual universe, locally rotationally 

symmetric (LRS) Bianchi-I space time has been widely studied. In order to study problems like the 

formation of galaxies and the process of homogenization and isotropization of the universe, it is necessary 

to study problems relating to in homogenous and anisotropic space-time. Mazumdar (1994) has obtained 

cosmological solutions for LRS Bianchi-I space time filled with a perfect fluid with arbitrary cosmic scale 

functions and studied kinematical properties of particular form of the solution. Hajj – Boutros (1985) 

presented a generating technique which converts known LRS Bianchi-I perfect fluid solutions into new 

solution of same type.  

Hajj and Sfeila (1987) and Ram (1989) also obtained some solutions for the same field equations by using 

solution generation technique. LRS Bianchi type-I space-time has been widely studied by many 

researches like Pradhan et al., (2001); Pradhan and Vishwakarma (2004); Charkraborty and Pradhan, 

(2001); Singh (2009); Akarsu and Kilinc (2010).  

Some authors have argued for dependence 
,~ 2 t
 See, e.g. Endo and Fukui (1977); Canuto et al., 

(1977); Lau (1985); Berman (1991a, 1991b). Keeping in mind the dimensional consideration in the spirit 

of quantum cosmology, Chen and Wu (1990) considered   varying as 
2R , Carvalho and Lima (1992) 

generalized it by taking 
,22 HR   

 where R is the scale factor of Robertson-Walker metric, H is 

Hubble parameter and  and


 are adjustable dimension less parameters. On the basis of quantum field 

estimation in the curved expanding background. Schűtzhold (2002a, 2002b) recently proposed a vacuum 

density proportional to Hubble parameter this leads to a vacuum energy density decaying as 
.3Hm
 

The idea of gravitational constant G in the framework of general relativity was first proposed by Dirac 

(1937). A lot of work have been done by Saha (2005, 2006a, 2006b) in studying FRW models and 

Bianchi type-I cosmological model in general relativity with varying G and  .  

Singh and Tiwari (2008) and Tiwari (2008, 2009, 2010, 2011) have studied perfect fluid Bianchi type-I 

model with variable G and   by taking different conditions for  . Recently Tiwari (2011) considered as 

cosmological term is proportional to Hubble parameter in Bianchi type-I model with varying G and 

Lambda.  

In this paper we study LRS Bianchi type-I model with variable G and . We obtain solution of Einstein 

equations assuming cosmological term proportional to Hubble parameter for stiff matter.  
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Model and Field Equations 

The spatially homogeneous and anisotropic LRS Bianchi type-I space time is described by the line 

element  

][)()( 2222222 dzdytBdxtAdtds 
       (1) 

The spatial volume of model is given by  
2ABV 
          (2) 

We define   3
1

2ABR  as the average scale factor so that Hubble parameters is defined as  
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Here and elsewhere a dot stands for ordinary time derivative of the concerned quantity.  
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where C

C
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B
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A
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
 321 ,

 are directional Hubble factor in the direction of X, Y and Z 

respectively. We assume the cosmic matter is represented by the energy momentum tensor of a perfect 

fluid  

  ijjiij pgpT  
           (5) 

where  , p are energy density, thermo dynamical pressure and i  is the four velocity vector of the fluid 

satisfying 
1i

i
. 

We assume that matter content obey an equation of state  

1,   op
          (6) 

The Einstein’s field equations with time dependent G and  is given by 

ijijij

l

lij gtTtGgRR )()(8
2

1
 

        (7) 

For the metric (1) and energy momentum tensor (5) in co-moving system of coordinates, the equation (7) 

yields  
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In view of vanishing of divergence of Einstein tensor, we have  
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The usual energy conservation equation 
0, j

jiT
, yields  
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Equation (11) together with (12) gives  

08  G
          (13) 

Implying that  is constant whenever G is constant.  
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where k1 = constant >0 

The non-vanishing components of shear tensor ij
 defined by 

k

kijijjiij uguu ;
3

2
;; 

. 

Thus the shear scalar   is obtained as  











B

B

A

A 

3

1


          (15) 

From (3) and (15) we obtain  
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Einstein’s field equations (8-10) can be also written in terms of Hubble parameter H, shear scalar   and 

declaration parameter q as: 

   GpqH  812 22

         (17) 
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where 
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Thus we have, 
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where k2 is constant of integration, from (20) we obtain 
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Implying that 
0

 

3

18
0,

3

1
22

2











G

 

Thus the presence of positive   lowers the upper limit of anisotropy whereas a negative   gives more 

room for anisotropy. 

Equation (21) can also be written as  
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where G

H
c




8

3 2


 is critical density and G

 8


 is the vacuum density. 

Form (21) and (22) we get 
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Showing that the rate of volume expansion decreases during time evolution and presence of positive   

slows down the rate of this decrease whereas a negative   would promote it. Thus we get 

     GHq  142 2

         (24) 

Implying 
20  qand

 

Solution of the Field Equations  

The system of equations (8)-(10) supply only five equations in six unknowns 
),,,,( andGpBA 

one 

extra equation is needed to solve the system completely, for this purpose we take a cosmological term is 

proportional to Hubble parameter. This variation law for vacuum density has initially proposed by 

Schűtzhold (2002b). Recently Borges and Carnerio (2005) have considered a cosmological term 

proportional to H. Thus we take the decaying vacuum energy density   

aH
          (25) 

Where a is positive constant of order m3, let  




 
be the ratio between the vacuum and matter densities.  
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Thus the value of a in anisotropic background is smaller in comparison to its value in isotropic space 

Borges and Carnerio (2005). From current value of H, 
,and
 precise value of a can be obtained.  

For stiff fluid 
)1( 

 leads to differential equation  

03 2  aHHH
         (27) 

Determining the time evolution of Hubble parameter integrating (27), we get 

 ate

a
H




13
         (28) 

From (28) we obtain scale factor  

 13  atemR
         (29) 

Where m is constant of integration, the metric (1) become in from  
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For the model (30) matter density ,  pressure p, gravitational constant G, cosmological term   are 

given by  
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Expansion scalar 
 and

 are given by  
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The ratio between the vacuum matter and densities are given by  
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Thus the presence of anisotropy lowers the upper limit a from the observed current values of 

,,, andGH   a precise value of a can be obtained. The declaration parameter q for the 

model is  

aHeq at 9131  
         (38) 

The vacuum energy density   and critical density c  are given by  
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For model (1) we observe that the spatial volume V is zero at t = 0 and expansion scalar   is 

infinite at t=0. Pressure, energy density, Hubble factor, shear s scalar and cosmological term 

diverses at initial singularity. 

The universe model matter density varies at R -6 in accordance with standard model. Whereas 

vacuum density decays as R -3.we obtain from 0 and 3
2

a  
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CONCLUSION 
We have investigated the LRS Bianchi type-I cosmological model containing stiff matter with 

cosmological term proportional to Hubble parameter suggested by Schűtzhold (2002a); on the basis of 

quantum field estimation of the vacuum density in an expanding background. We have found that 

cosmological term   being very large at initial times relaxes to a genuine cosmological constant at the 

late time, which is accordance with the observations. The model asymptotically tends to a deSitter 

universe. Gravitational constant G is constant initially and increases exponentially with time increases. 

Which is similar result of abdussattar and Vishwakarma (1997). 
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