
International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2015 Vol. 5 (4) October-December, pp. 25-35/Abel and Shambajee 

Research Article   

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  25 

 

BOUNDARY LAYER FLOW OF A NANOFLUID PAST A LINEAR AND 

EXPONENTIAL STRETCHING SHEET-A COMPARATIVE STUDY 

*Subhas Abel M. and Rajesh Singh Shambajee N. 
Department of mathematics Gulbarga University, Karnataka, India 

*Author for Correspondence 

 

ABSTRACT 

The present work considers the problem of steady laminar 2D boundary layer flow, and heat transfer of 

nanofluids with comparative study concerned to linear stretching sheet (LSS) as well as exponential 

stretching sheet (ESS) respectively. The governing boundary value problems with their usual boundary 

conditions are solved numerically. The BVP which is in the form of P.D.E’s has been converted into 

nonlinear ordinary differential equations with the usage of a similarity transformation. The transformed 

form of coupled higher order non-linear ordinary differential equations with the boundary conditions are 

numerically solved by using fourth order Runge-Kutta method, along with shooting technique. The 

velocity, temperature and nanoparticle concentration profiles are analysed for both LSS and ESS, 

considering their effects on the involved parameters namely, Prandtl number Pr, Lewis number Le, 

Brownian motion parameter Nb and thermophoresis parameter Nt. The variation of the reduced Nusselt 

number and reduced Sherwood numbers with Nb and Nt for various values of Pr and Le is provided in 

tabular and graphical forms. In ESS the value of reduced Nusselt number and reduced Sherwood number 

is found to be quantitatively higher (greater) compared to LSS. In both the cases of LSS and ESS it is 

found that the reduced Nusselt number is a decreasing function, while the reduced Sherwood number is 

an increasing function for each of the dimensionless parameters Pr, Le, Nb and Nt considered. A 

comparative study connecting the previously published results and the present results, are found to be in 

excellent agreement 

 

Keywords: Nanofluid; Stretching Sheet; Brownian Motion; Thermophoresis; Heat Transfer; Similarity 
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INTRODUCTION 

During the last many years, the study of boundary layer flow and heat transfer over a stretching sheet has 

achieved a lot of success because of its large number of applications in industry and technology. Few of 

these applications are materials manufactured by polymer extrusion, drawing of copper wires, continuous 

stretching of plastic films, artificial fibres, hot rolling, wire drawing, glass fibre, metal extrusion and 

metal spinning etc. The boundary layer flow and heat transfer due to nanofluids over a stretching sheet are 

thrust areas of current research. Such investigations find applications over a broad spectrum of science 

and engineering disciplines. An important aspect of boundary layer flow of a nanofluid over a stretching 

sheet is the heat transfer characteristics. It is crucial to understand the heat transfer characteristics of the 

stretching sheet so that the finished product meets the desired quality. This is due to the fact that the 

quality of a final product mainly depends on the rate of heat transfer and the stretching rate. 

Subsequent to the pioneering work by Sakiadis (1961), a large amount of literature is available on 

boundary layer flow of Newtonian and non-Newtonian fluids over linear and nonlinear stretching 

surfaces. Thereafter several researchers have extensively considered to study the various aspects of 

boundary layer flow and heat transfer problems over linear as well as nonlinear stretching sheet, (see Liu, 

2004; Khan et al., 2003; Cortell, 2006; Dandapat et al., 2007; Nadeem et al., 2010; Bachok and Ishak, 

2010; Bachok et al., 2010; Bachok et al., 2011; Bachok et al., 2011). Accordingly, Kuznestov and Nield 

(2010) have studied the natural convective boundary-layer flow of a nanofluid past a vertical plate 

analytically. They used a model in which Brownian motion and thermophoresis effects were taken into 

account. Ibrahim and Shanker (2012) have studied the boundary-layer flow and heat transfer of nanofluid 
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over a vertical plate taking into account the convective surface boundary condition. Further, Makinde and 

Aziz (2011) conducted a numerical study of boundary layer flow of a nanofluid past a stretching sheet 

with convective boundary condition. Mustafa et al., (2011) investigated stagnation point flow of a 

nanofluid towards a stretching sheet. Khan and Pop (2010) studied the boundary layer flow of a nanofluid 

past a stretching sheet with a constant surface temperature.  

Recently, Aminreza et al., (2012) investigated the effect of partial slip condition on the flow and heat 

transfer of nanofluids past stretching sheet, with prescribed constant wall temperature. This problem is 

solved by using Runge-Kutta-Fehlberg scheme with shooting method. They indicated that the reduced 

Nusselt number and Sherwood number are strongly influenced by the velocity slip parameter. Wubshet 

and Bandari (2013) investigated the boundary layer flow and heat transfer over a permeable stretching 

sheet considering a nano fluid with the effect of magnetic field, slip boundary condition and thermal 

radiation. It seems that Magyari and Keller (1999) were the first to consider the boundary layer flow and 

heat transfer over exponentially stretching sheet. Bidin and Nazar (2009), Ishak (2011) and Nadeem et al., 

(2010, 2011) numerically examined the flow and heat transfer over an exponentially stretching surface 

with thermal radiation. Elbashbeshy (2001) numerically examined the flow and heat transfer over an 

exponentially stretching surface considering wall mass suction. Sanjayanand and Khan (2005) studied the 

visco-elastic boundary layer flow and heat transfer due to and exponentially stretching sheet. Ishak (2011) 

studied the MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. 

Singh and Agarwal (2012) explained the effects of heat transfer for two types of viscoelastic fluids over 

and exponentially stretching sheet with thermal conductivity and radiation in porous medium 

Thus motivated by the above mentioned investigations and applications of linear and exponential 

stretching sheets, we contemplate to fulfil this gap (i.e comparative study) by considering both LSS and 

ESS at a time. The present work involves the problem of steady laminar two dimensional boundary layer 

flow and heat transfer of nanofluids past a LSS and ESS, a comparative study.  

Mathematical Formulation 

We consider a steady, incompressible, laminar, two dimensional boundary layer flow of a viscous 

nanofluid past a flat stretching sheet (LSS and ESS) coinciding with the plane y=0 and the flow being 

confined to y>0.The flow is generated due to stretching of the sheet caused by the simultaneous 

application of two equal and opposite force along the x-axis. Keeping the origin fixed, the sheet is then 

stretched with a velocity wu (x) ax (in caseof LSS), where
 
“a” is constant and x is the coordinate 

measured along the linear stretching surface and w 0u u (x) U exp(x / L) (in caseof ESS)  , where 

0U is the reference velocity, L is the reference length and x is the coordinate measured along the 

stretching surface varying exponentially with the distance from the slit as shown in Figure 1. 

  

 
Figure 1: Physical model and co-ordinate system 
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It is assumed that at the stretching surface, the temperature T and the nanoparticles fraction C take 

constant values wT  and wC respectively.  

When y tends to infinity, the ambient values of temperature T and nanoparticles fraction C are denoted by 

T  and C  respectively. It is assumed that the base fluid and the suspended nanoparticles are in thermal 

equilibrium. 

The basic steady conservation of mass, momentum, thermal energy and nanoparticles equations for 

nanofluids can be written in Cartesian co-ordinates x and y as, see Kuznetsov and Nield ()[30-31]. In both 

the cases of LSS and ESS the flow and heat transfer characteristics under the boundary layer 

approximations are governed by the following equations. 
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The boundary conditions in both the cases of LSS and ESS are 

     w W Wv 0, u u (x), T T , C C , at y 0 (5)  

 
  u = v = 0, T T , C C , as y  (6)

 

Where u and v are the velocity components along x and y axis respectively, f/   is the kinematic 

viscosity, f/(c )     is the thermal diffusivity, BD is the Brownian diffusion coefficient, TD  is the 

thermophoresis diffusion coefficient and p f( a) /( a)    is the ratio between the effective heat capacity 

of the nanoparticles material and heat capacity of the nano fluid.  

T is the temperature inside the boundary layer, T  is the temperature far away from the sheet. In case of 

LSS: wu (x) ax  is the stretching velocity of the sheet,  
2

wT T b x / l  is the temperature of 

stretching surface,  
2

wC C c x / l  is nanoparticles volume fraction at the stretching surface. In case 

of ESS: wu (x) U exp(x / L)  is the stretching velocity of the sheet, wT T bexp(x / 2L)  is the 

temperature of stretching surface, wC C cexp(x / 2L)  is nanoparticles volume fraction at the 

stretching surface.  

We are interested in similarity solution of the above boundary value problem therefore we introduce the 

following similarity transformations (dimensionless quantities). 
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In Case of ESS 

0
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In eqns (7) and (8), f denotes the non-dimensional stream function, the prime denotes differentiation with 

respect to  and the stream function  is defined in the usual way as      u / y, v / x.

 Making use of transformations (7) and (8) in (1), we can realize incompressibility condition (i.e. 

continuity equation) is identically satisfied and the governing eqns (2) - (4) takes the form of non-linear 

ordinary differential equations: 

In Case of LSS 
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In Case of ESS 
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The Boundary Conditions in Both the Cases of LSS and ESS are 
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Where f ,  , and   are dimensionless velocity, temperature and nanoparticles concentration, 

respectively.   is the similarity variable, the prime denote differentiation with respect to   and the 

governing parameters appearing in eqs (9) to(14) are defined by 

B

p B w
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It is important to note that this boundary value problem reduces to the classical problem of flow and heat 

and mass transfer due to a stretching surface in a viscous fluid when Nb and Nt are zero in eqs. (10)-

(11)in case of LSS and in eqs. (13)-(14) in case of ESS. (The boundary value problem for  then becomes 

ill-posed and is of no physical significance). 

The important physical quantities of interest in this problem are local Skin friction coefficient fC , the 

local Nusselt number xNu  and the local Sherwood number xSh are defined as: 
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Where wall shear stress w , wall heat flux wq , mass flux mq  are given by: 
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In Case of LSS 

By solving eqs. (17) using eqs. (7),(18).we get 

' ' ' 'x x
f x

x x

Nu Sh
C Re f (0), (0) Shr, (0) Nur (19)

Re Re
       

 
Where f x x xC , Nu (Nur), Sh (Shr), Re  are the skin friction, local Nusselt number, local Sherwood 

number and local Reynolds number respectively. 

In Case of ESS 

By solving eqs. (17) using eqs. (8),(18).We get 

' ' ' 'x x
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Where X=x/L is dimensionless coordinate along the sheet, L is the length of the sheet, 

f x x xC , Nu (Nur), Sh (Shr), Re  are the skin friction, local Nusselt number, local Sherwood number and 

Reynolds number respectively. 

Numerical Solution  
An efficient fourth order Runge-Kutta method along with Shooting technique has been employed to study 

the flow model of the above coupled non-linear ordinary differential equations (9)-(11) and (12)-(14) for 

different values of governing parameters viz. Prandtl number Pr, Lewis parameter Le, Brownian motion 

parameter Nb and thermophoresis parameter Nt. The non-linear differential equations are first 

decomposed into a system of first order differential equations. The coupled ordinary differential eqs.(9)-

(11) and (12)-(14) are third order in f and second order in  and   which have been reduced to a system 

of seven simultaneous equations for seven unknowns. In order to numerically solve this system of 

equations using Runge-Kutta method, the solutions requires seven initial conditions but two initial 

conditions in f one initial condition in each of  and  are known. However, the values of f,  and  are 

known at  .These end conditions are utilized to produce unknown initial conditions at 0   by 

Shooting technique. The most important step of this scheme is to choose the appropriate finite value of 

 .Thus to estimate the value of  , we start with some initial guess value and solve the boundary value 

problem consisting of Eqs. (9)-(11) and (12)-(14) to obtain 
' ' ' 'f (0), (0)and (0)  .The solution process is 

repeated with another larger value of  until two successive values of 
' ' ' 'f (0), (0)and (0)   differ only 

after desired significant digit. The last value  is taken as the finite value of the limit  for the 

particular set of physical parameters for determining velocity, temperature, and concentration, 

respectively are f (0), (0)and ((0)  in the boundary layer. After getting all the initial conditions we 

solve this system of simultaneous equations using fourth order Runge-Kutta integration scheme. The 

value of  is selected to vary from 5 to 20 depending on the physical parameters governing the flow so 

that no numerical oscillation would occur.  

In this study, the boundary value problem is first converted into an initial value problem (IVP).Then the 

IVP is solved by appropriately guessing the missing initial value using the shooting method for several 

sets of parameters. The step size h=0.1 is used for the computational purpose.The error tolerance of 
610
 

is also being used. The results obtained are presented through tables and graphs, and the main features of 

the problems are discussed and analyzed. 
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RESULTS AND DISCUSSION 

The numerical solutions are obtained for temperature and concentration profiles for different values of 

governing parameters. The obtained results are displayed through graphs Figures 2-9, for temperature and 

concentration profiles respectively.  

 

  
Figure 2: Effects of Nt and Nb on temperature 

profiles 

 

Figure 3: Effects of Nb on temperature profiles 

 

  
Figure 4: Effects of Nt on temperature profiles Figure 5: Effects of Pr and Le on temperature 

profiles 

 

  
Figure 5: Effects of Pr number on temperature 

profiles 

Figure 5: Effects of Nb on concentration profiles 
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Figure 8: Effects of Le on concentration profiles Figure 9: Effects of Nt on concentration profiles 

 

Figures 2, 3 and 4 shows the effects of Nt and Nb parameters for the selected values of Pr and Le numbers 

and for the LSS and ESS cases respectively. As expected, the boundary layer profiles for the temperature 

function ( )  are essentially the same form as in the case of a regular fluid. In both the cases of LSS and 

ESS, it is observed that the temperature increases as the parameters (figure 2, Nt, Nb=0.1, 0.3, 0.5),(figure 

3, Nb=0.1,0.2,0.3) and (figure 4, Nt=0.1,0.3,0.5) increases, which results in thickening of thermal 

boundary layer thickness of the fluid. It is noticed that the temperature (heat fraction) and thermal 

boundary layer thickness of the fluid increases more in case of LSS compared to ESS. In all the graphs 

where ever we are getting the LSS, we have compared present work with those reported by Khan 

and Pop (2010) 

Figures 5 and 6 shows the effects of Pr and Le numbers on the temperature profiles for the selected values 

of Nb and Nt parameters and for both the LSS and ESS cases respectively. In both the cases of LSS and 

ESS, it is observed that the temperature decrease as the parameters in (figure 5, Pr, Le=1, 10) and (figure 

6, Pr=10, 15, 20) increases, which results in thinning of thermal boundary layer thickness of the fluid. It is 

noticed that the temperature (heat fraction) and thermal boundary layer thickness of the fluid decreases 

more in case of ESS compared to LSS. 

Figures 7, 8 and 9 shows the effects of Nb, Le and Nt parameters on the concentration profiles for the 

selected values of other parameters and for the LSS and ESS cases respectively. In both the cases of LSS 

and ESS, it is observed that the concentration decrease as the parameters (figure 7, Nb=0.1, 0.3, 0.5), 

(figure 8, Le=10, 20, 30) increases, while concentration increases as the parameter (figure 9, Nt=0.1, 0.2, 

0.3) increases. In figures 7 and 8 which results in thinning of concentration boundary layer thickness of 

the fluid. It is noticed that the concentration (mass fraction) and concentration boundary layer thickness of 

the fluid decreases more in case of ESS compared to LSS. Whereas figure 9 which results in thickening of 

concentration boundary layer thickness of the nano fluid. It is seen that the concentration profile and 

concentration boundary layer thickness of the fluid increases more in case LSS compared to ESS.  

Finally, a comparison with published papers available in the literature has been done in order to check the 

accuracy of the present results. Table 1 compares results for the local Nusselt number 
' (0)  and local 

Sherwood number 
' (0)  with Nt and Nb for Le=Pr=10 obtained in the present work, are in good 

agreement with the results reported by Khan and Pop (2010) and Aminreza et al., (2012). 

From table 2, it shows a test of accuracy of the solution, the values of local Nusselt number 
'(0)

 
for 

different values of Prandtl number are compared with solutions reported by Magyari and Keller (1999), 

Bidin and Nazar (2009), Ishak (2011). The table shows the numerical solution obtained by the present 

fourth order Runge-Kutta method along with Shooting technique are in very good agreement. Therefore, 

we are confident that our results are highly accurate to analyze the flow problem.  
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Table 1: Comparison of results for the local Nusselt number '(0)  and local Sherwood number 
'(0)  in case of LSS, when Le=Pr=10  

 

 

 

 

 

 

Khan 

and  

Pop 

(2010) 

Aminreza et al., 

(2012) 

Present  

result 

 

Khan and Pop 

(2010) 

Aminreza 

Noghrehabad 

 (2012) 

Present  

result 

 

Nt Nb '(0)  '(0)  '(0)   '(0)  
 

'(0)  '(0)  

0.1 0.1 0.9524 0.9523768 0.952398 2.1294 2.1293938 2.129346 

0.2  0.6932 0.6931743 0.693215 2.2740 2.2740215 2.273857 

0.3  0.5201 0.5200790 0.520130 2.5286 2.5286382 2.528362 

0.4  0.4026 0.4025808 0.402636 2.7952 2.7951701 2.794799 

0.5  0.3211 0.3210543 0.321110 3.0351 3.0351425 3.034698 

0.1 0.2 0.5056 0.5055814 0.505589 2.3819 2.3818706 2.381470 

 0.3 0.2522 0.2521560 0.252444 2.4100 2.4100188 2.409953 

 0.4 0.1194 0.1194059 0.119402 2.3997 2.3996502 2.399450 

 0.5 0.0543 0.0542534 0.054253 2.3836 2.3835712 2.383571 

0.2 0.3  --  -- 0.181881  --  -- 2.514821 

0.3   --  -- 0.135775  --  -- 2.608559 

 

Table 2: Comparison of results for the local Nusselt number 
'(0)  in case of ESS for Nt 

=Nb=Le=0 

Pr Magyari and Keller (1999) Bidin and 

Nazar (2009) 

Anur Ishak (2011) Present Results 

 

1.0 0.954782 0.9548 0.9548  0.951556 

2.0 -------- 1.4714 1.4715 1.465304 

3.0 1.869075 1.8691 1.8691  1.859997 

5.0 2.500135 ------- 2.5001  2.485222 

10.

0 

3.660379 ------- 3.6604  3.630831 

 

Nomenclature 

LSS linear stretching sheet 

ESS exponential stretching sheet 

a,b,c  constant 

fc   skin friction coefficient 

wu   is the velocity of the stretching sheet 

wC   is nanoparticles volume fraction at the stretching surface 

C   ambient nanoparticles volume fraction 

BD   brownian diffusion coefficient 

TD   thermophoresis diffusion coefficient 

f ( )   dimensionless stream function 

   thermal conductivity 

Pr  prandtl number 

Le  lewis number 

Nb  brownian motion parameter 

Nt  thermophoresis parameter 
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xNu (Nur)   local Nusselt number 

xSh (Shr)   local Sherwood number 

xRe   local Reynolds number 

WT   uniform temperature over the surface of the sheet 

T   ambient temperature or is the temperature far away from the sheet 

T  temperature of the fluid inside the boundary layer 

u,v  velocity component along x and y-direction 

p  is the fluid pressure 

Greek symbols 

   dimensionless similarity variable 

   dynamic viscosity of the fluid 

   kinematic viscosity of the fluid 

   dimensionless concentration function 

f   density of the fluid 

f(a )   heat capacity of the fluid 

p(a )
 

effective heat capacity of a nano fluid 

   stream function 

   thermal diffusivity 

   dimensionless temperature 

   parameter defined by 
p f(a ) /(a )   

Subscripts 

   condition at the free stream 

w  condition of the surface 

Concluding Remarks  

In this paper, effects of Prandtl number (Pr), Lewis number (Le), Brownian motion parameter (Nb), 

thermophoresis parameter (Nt) on temperature profiles, concentration profiles, local Nusselt number and 

local Sherwood number, on the boundary layer flow and heat transfer of nanofluids past a linear and 

exponential stretching sheet is investigated.  

In both the cases of LSS and ESS, the variation of the reduced Nusselt number and reduced Sherwood 

numbers with Nb and Nt for various values of Pr and Le is presented in tabular and graphical forms. The 

numerical results obtained are in excellent agreement with the previously published data in limiting 

condition and for some particular cases of the present study. Some of the important findings of our 

investigations are as mentioned below 

Similarity between LSS and ESS 

The increase in Brownian motion parameter Nb and thermophorosis parameter Nt is to enhance 

temperature in the thermal boundary layer which results in reducing temperature at the surface, where as 

the reverse effect is noticed in case of Pr, Le.  

It is established that the reduced Nusselt number is a decreasing function, while the reduced Sherwood 

number is an increasing function for each of the dimensionless parameters Pr, Le, Nb and Nt considered. 

The reduced Sherwood number is an increasing function of higher values of Pr, and a decreasing function 

of lower values of Pr, while reduced Nusselt number is a decreasing function for lower values of Pr and 

increasing function for higher values of Pr for each of Le, Nb and Nt. 

The reduced Nusselt number is a decreasing function of higher values of Le and an increasing function of 

lower values of Le, while reduced Sherwood number is an increasing function of higher values of Le and 

decreasing function of lower values of Le, for each of M Pr, Nb, and Nt.  
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Differences between LSS and ESS: 

In LSS the value of reduced Nusselt number and reduced Sherwood number is found to be quantitatively 

lower (smaller) compared to ESS. 

In case of ESS, it is noticed that the reduced Nusselt number is a decreasing function, while reduced 

Sherwood number is an increasing function for (Nb=0.1 to Nb=0.5 keeping Nt =0.1, 0.2, 0.3, 0.4, 0.5 

fixed) and initially decreasing function for (Nt=0.1 to Nt=0.5 keeping Nb=0.1,0.2 fixed) afterwards 

increasing function for (Nt=0.1 to 0.5 for Nb=0.3, 0.4, 0.5 fixed) and for each of the dimensionless 

parameters Pr, Le, Nb and Nt considered. 

In figure 12(b), Shr vs Nt: In case of LSS as we increase Nb=0.3, 0.4, 0.5 the reduced Sherwood number 

decreases where as reverse effects is noticed in case of ESS for the selected values of Pr=10, Le=10. 
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