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ABSTRACT  

The thermal instability of a couple-stress fluid acted upon by uniform vertical magnetic field and rotation 
heated from below is investigated. Following the linearized stability theory and normal mode analysis, the 

paper through mathematical analysis of the governing equations of couple-stress fluid convection with a 

uniform vertical magnetic field and rotation, for the case of rigid boundaries shows that the complex 

growth rate   of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside a 

semi-circle  
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in the right half of a complex  -plane, where Q is the Chandrasekhar number, AT  is the Taylor number, 

and F is the couple-stress parameter, which prescribes the upper limits to the complex growth rate of 

arbitrary oscillatory motions of growing amplitude in a rotatory couple-stress fluid heated from below.  
Key Words: Thermal convection; Couple-Stress Fluid; Rotation; Magnetic Field; PES; Chandrasekhar 

number; Taylor number. 

 

INTRODUCTION 
The thermal instability of a fluid layer with maintained adverse temperature gradient by heating the 

underside plays an important role in Geophysics, interiors of the Earth, Oceanography and Atmospheric 

Physics etc. A detailed account of the theoretical and experimental study of the onset of Bénard 
Convection in Newtonian fluids, under varying assumptions of hydrodynamics and hydromagnetics, has 

been given by Chandrasekhar (1981). The use of Boussinesq approximation has been made throughout, 

which states that the density changes are disregarded in all other terms in the equation of motion except 
the external force term. Sharma et al (1976) has considered the effect of suspended particles on the onset 

of Bénard convection in hydromagnetics. The fluid has been considered to be Newtonian in all above 

studies. With the growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations on such fluids are desirable. Stokes (1966) proposed and postulated the theory of couple-
stress fluid. One of the applications of couple-stress fluid is its use to the study of the mechanism of 

lubrication of synovial joints, which has become the object of scientific research. According to the theory 

of Stokes (1966), couple-stresses are found to appear in noticeable magnitude in fluids having very large 
molecules. Since the long chain hylauronic acid molecules are found as additives in synovial fluid, 

Walicki and Walicka(1999) modeled synovial fluid as couple-stress fluid in human joints. An electrically 

conducting couple-stress fluid heated from below in porous medium in the presence of uniform horizontal 
magnetic field has been studied by Sharma and Sharma (2001). Sharma and Thakur (2000) have studied 

the thermal convection in couple-stress fluid in porous medium in hydromagnetics. Sharma and Sharma 

(2004) and Kumar and Kumar (2011) have studied the effect of dust particles, magnetic field and rotation 

on couple-stress fluid heated from below and for the case of stationary convection, found that dust 
particles have destabilizing effect on the system, where as the rotation is found to have stabilizing effect 

on the system, however couple-stress and magnetic field are found to have both stabilizing and 

destabilizing effects under certain conditions.   
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However, in all above studies the case of two free boundaries which is a little bit artificial except the 

stellar atmospheric case is considered. Banerjee et al (1981) gave a new scheme for combining the 

governing equations of thermohaline convection, which is shown to lead to the bounds for the complex 
growth rate of the arbitrary oscillatory perturbations, neutral or unstable for all combinations of 

dynamically rigid or free boundaries and, Banerjee and Banerjee (1984) established a criterion on 

characterization of non-oscillatory motions in hydrodynamics which was further extended by Gupta et 
al.(1986). However no such result existed for non-Newtonian fluid configurations, in general and for 

couple-stress fluid configurations, in particular. Banyal (2011) and Banyal and Singh (2012, 2013)) have 

characterized the non-oscillatory motions in couple-stress fluid. 

Keeping in mind the importance of non-Newtonian fluids, the present paper is an attempt to prescribe the 
upper limits to the complex growth rate of arbitrary oscillatory motions of growing amplitude, in a layer 

of incompressible couple-stress fluid heated from below in the presence of uniform vertical magnetic field 

and rotation opposite to force field of gravity, when the bounding surfaces are of infinite horizontal 
extension, at the top and bottom of the fluid are rigid. 

Formulation of the Problem and Perturbation Equations 
Considered an infinite, horizontal, incompressible couple-stress fluid layer, of thickness d, heated from 

below so that, the temperature and density at the bottom surface z = 0 are 0T , 0  respectively and at the 

upper surface z = d are dT , d  and that a uniform adverse temperature gradient 









dz

dT
  is maintained. 

The fluid is acted upon by a uniform vertical rotation  


,0,0  and uniform vertical magnetic field 

 HH ,0,0


.. Let  , p, T and  wvuq ,,


 denote respectively the density, pressure, temperature and 

velocity of the fluid. Then the momentum balance, mass balance equations of the couple-stress fluid in 

the presence of uniform vertical magnetic field and rotation (Stokes (1966) and Chandrasekhar (1981)) 

are 
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The equation of state  

  00 1 TT   ,                                                                                                                    (6) 

Here  gg 


,0,0  is acceleration due to gravity. The kinematic viscosity , the magnetic permeability e , 

the electrical resistivity , couple-stress viscosity
' , thermal diffusivity

vc

q

0
  , and coefficient of 
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thermal expansion  are all assumed to be constants and vc  denote the heat capacity of the fluid at 

constant volume.  

The basic motionless solution is 

             0,0,0


q  , zTT  0 ,  


,0,0  and  z  10 .                                           (7)                                                                                                                                                      

Assume small perturbations around the basic solution state and let    , p ,  ,  
zyx hhhh ,,



 

and  wvuq ,,


 denote respectively the perturbations in density  , pressure p, temperature T, magnetic 

field  HH ,0,0


and perturbation fluid velocity (0,0,0) .   

The change in density   caused mainly by the perturbation   in temperature is given by 

      0 ,                                                                                                                                (8)                                                                                                                                  

            Then the linearized perturbation equations of the couple-stress fluid becomes 
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Within the framework of Boussinesq approximation, equations (9) - (13), gives 
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Normal Mode Analysis                               
Analyzing the disturbances into normal modes, we assume that the Perturbation quantities are of the form 
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Where yx kk ,  are the wave numbers along the x and y-directions respectively  2
1

22
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resultant wave number and n is the growth rate which is, in general, a complex constant. 

Using (19), equations (14) – (18), in non-dimensional form, become 
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We now consider the case where both the boundaries are rigid and perfectly conducting and are 

maintained at constant temperature, and then the perturbations in the temperature are zero at the 

boundaries. The appropriate boundary conditions with respect to which equations (20)--(24), must 
possess a solution are 

     W = DW = 0, 0 , Z=0, K=0 and DX = 0 at z = 0 and z = 1.                                               (25)                                           

 An equation (20)--(24), along with boundary conditions (25), poses an eigenvalue problem for   and we 

wish to characterize  i  when 0r . 

We first note that since W  and Z  satisfy )1(0)0( WW  , K(0)=0=K(1) and )1(0)0( ZZ   in 

addition to satisfying to governing equations and hence we have from the Rayleigh-Ritz inequality (1973) 
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Further, for )1(0)0( WW  , K(0)=0=K(1) and )1(0)0( ZZ  , Banerjee et al (1992),  have show 

that 
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Mathematical Analysis 

We prove the following lemmas: 
Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Multiplying equation (23) and its complex conjugate, and integrating by parts each term on  both 
sides of the resulting equation for an appropriate number of times and making use of boundary conditions 
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It is easily seen upon using the boundary conditions (25) that 
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                                                                                     (Utilizing Cauchy-Schwartz-inequality) 

Upon utilizing the inequality (29) and (30), we get 
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This completes the proof of lemma 1. 

Lemma 2: For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Multiplying equation (21) by 
Z  (the complex conjugate of Z), integrating by parts each term of 

the resulting equation on the left hand side for an appropriate number of times on utilizing equation (24) 

and  appropriate boundary conditions (25), it follows that 
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This completes the proof of lemma 2.    
We prove the following theorem: 

Theorem 1: If  R  0 , F  0, 0Q , AT 0, 01p , 02 p , 0r  and 0i  then the necessary condition 

for the existence of non-trivial solution   XZKW ,,,,  of  equations  (20) – (24), together with 

boundary conditions (25)  is that 
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








 F

TQp A




  .                                    

Proof: Multiplying equation (20) by  
W  (the complex conjugate of W) throughout and integrating the 

resulting equation over the vertical range of z, we get 
 

      WdzaDWWdzaDWFWdzaDW
222

1

0

1

0

322

0

22  
     

  

1

0

22*

1

0

1

0

2 )( KdzaDDWQDZdzWTdzWRa A
,                                                                (36) 

 
Taking complex conjugate on both sides of equation (22), we get 

    WpaD 1
22

,                                                                                                         (37) 

Therefore, using (37), we get  
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      
 

1

0

1

0

1

22 dzpaDdzW  ,                                                                                  (38) 

Also taking complex conjugate on both sides of equation (21), we get 

     *22221 QDXDWZaDaDF   ,                                                                    (39) 

Therefore, using (39) and (24), we get  

        

1

0

*

2

22

1

0

1

0

22222

1

0

)( dzXpaDQdzZaDFaDZZdzDWDZdzW  ,     (40)                        

Also taking complex conjugate on both sides of equation (23), we get 

    DWKpaD 2
22 ,                                                                                                        (41) 

Therefore, equation (41), using appropriate boundary condition (25), we get  

        
 

1

0

1

0

1

0

2

22222222 dzKpaDaDKKdzaDDWKdzaDDW  ,               (42)     

Substituting (38), (40) and (42) in the right hand side of equation (36), we get 

      WdzaDWWdzaDWFWdzaDW
222

1

0

1

0

322

1

0

22  
                                           

      
 

1

0

22222

1

0

1

222 dzZaDFaDZTdzpaDRa A  ,                                  (43) 

  
 

1

0

2

22

1

0

2

2222 )()( dzXpaDXQTdzKpaDaDKQ A   

Integrating the terms on both sides of equation (43) for an appropriate number of times by making use of 

the appropriate boundary conditions (25), we get  

   dzWaDWaWDaWDFdzWaDW  

1

0

2624
2

22
2

3

1

0

222
33

     dzZaDZTdzpaDRadzWaDWaWD A   

1

0

222
1

0

2

1

2222

1

0

2422
2

2 2   

     

1

0

222
1

0

2
1

0

2422
2

2 2 dzXaDXQTdzZTdzZaDZaZDFT AAA  ,                                      (44) 

   




 

1

0

1

0

222*

2

2422
2

2

1

0

2

2 2 dzKaDKQpdzKaDKaKDQdzXQpTA   

And equating imaginary parts on both sides of equation (44), and cancelling )0(i  throughout from 

imaginary part, we get 

      

1

0

1

0

2

2

222

2

1

0

1

0

22
1

0

1

2222
dzXQpTdzKaDKQpdzZTdzpRadzWaDW AA

,               (45)                                                                         

Now R   0, 0Q  and AT  0, utilizing the inequalities (31) and (35), the equation (45) gives,  

      

1

0

1

0

2

2

222

2

1

0

1

0

22
1

0

1

2222
dzXQpTdzKaDKQpdzZTdzpRadzWaDW AA

,               (45)                                                                         

Now R   0, 0Q  and AT  0, utilizing the inequalities (31) and (35), the equation (45) gives,  
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  
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Q

F
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A

A


 0,             (46)                                         

and therefore , we must have 

                    

1

24 )1(
1













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F

T
Q A


 .                                                                                                 (47) 

Hence, if 

 0r  and 0i , then 

1

24 )1(
1















F

T
Q A


  .                                                                        (48) 

And this completes the proof of the theorem. 

Conclusion 

The inequality (48) for 0r  and 0i , can be written as 

2

24

222

)1(
1















F

T
Q A

ir


 , 

The essential content of the theorem, from the point of view of linear stability theory is that for the 

configuration of couple-stress fluid of infinite horizontal extension heated form below, having top and 
bottom bounding surfaces rigid, in the presence of uniform vertical magnetic field and rotation parallel to 

the force field of gravity, the complex growth rate of an arbitrary oscillatory motions of growing 

amplitude, must lie inside a semi-circle in the right half of the r i  - plane whose centre is at the origin 

and radius is

1

24 )1(
1















F

T
Q A


, where Q is the Chandrasekhar number, AT  is the Taylor number 

and F is the couple-stress parameter. 
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