International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm
2014 Vol. 4 (4) October-December, pp. 1-5/Gopalan et al.

Research Article

ON THE NON-HOMOGENEOUS BIQUADRATIC EQUATION
WITH 4 UNKNOWNS x* +y® +22° = 3xyz +6(k* +s*)(x + y)w*

Gopalan M.A.%, *Geetha K. and Manju Somanath®
'Department of Mathematics, Shrimathi Indira Gandhi College, Trichy
“Department of Mathematics, Cauvery College for Women, Trichy
*Department of Mathematics, National College, Trichy
*Author for Correspondence

ABSTRACT
The non- homogeneous  biquadratic  equation  with  four  unknowns  given by

x> +y°® +22% =3xyz +6(k* +*)(x+ y)W’ is considered and analyzed for finding its non zero distinct
integral solutions. Introducing the linear transformations X=u+v, y=U—-Vv z=2u and employing

the method of factorization, different patterns of non zero distinct integer solutions of the equation under
the above equation are obtained. A few interesting relations between the integral solutions and the special
numbers namely Polygonal numbers, Pyramidal numbers, Centered Polygonal numbers, Centered
Pyramidal numbers, Thabit-ibn-Kurrah number, Carol number, Mersenne number are exhibited.
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Notation

tm n = Polygonal number of rank n with sides m

pm = Pyramidal number of rank n with sides m

ct, , = Centered Polygonal number of rank n with sides m
cp,, = Centered Pyramidal number of rank n with sides m
Jp = Gnomonic number

Tha, = Thabit-ibn-Kurrah number

car | = Carol number

Mer, = Mersenne number

Ky, = Kynea number

WO, = Woodhall number

P, = Pronic number

INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular
biguadratic Diophantine equations, homogeneous and non-homogeneous have aroused the interest of
numerous mathematicians since antiquity (Carmichael, 1959; Dickson, 1952; Gopalan and Pandichelvi,
2009). In this context one may refer (Gopalan and Sangeetha, 2010; Gopalan and Sangeetha, 2010;
Gopalan and Sangeetha, 2011; Gopalan and Sivkami, 2013; Manju et al., 2012; Manju et al., 2011;
Sangeetha et al., 2014) for various problems on the biquadratic Diophantine equations. However, often
we come across non-homogeneous biquadratic equations and as such one may require its integral solution
in its most general form. This paper concern with the non homogeneous biquadratic equation with four
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unknowns X"+ " +22° = 3xyz +6(k” +s7)(x+ y)W3 for determining its infinitely many non-zero
integral solutions. Also, a few interesting properties among the solutions are presented.

Method of Analysis
The biquadratic equation with four unknowns to be solved for its non-zero distinct integral solution is

X2 +y? +22° =3xyz +6(k* +s*) (X + Y)W’ 1)
Consider the transformations
X=U+V
y=u-v
z=2u )
On substituting (2) in (1), we get
u? +v2 :(k2+32)w3 €))
In what follows we illustrate the methods of obtaining patterns of integer solutions
to (1)
Pattern 1
Assume w=p?+qg®=(p+iq)(p—iq) (4)

Using (4) in (3), and employing the method of factorization we get

(U+iv)(u—iv) = (k+is)(k —is)(p+igq)>(p—iq)®
Which is equivalent to the system of equations,

u+iv=(k+is)(p+iq)®
u—iv=(k—is)(p—iq)®
On equating real and imaginary parts, we obtain
u=u(p,q,k,s) =kp®-3pg®k +sq° —3p2qs

v=v(p,q,k,s) =sp> +3pg’k —kq> —3p?qgs
On substituting u and v in (2) we get the values of x, y and z . The non-zero distinct integrals values of X,
y, z and w satisfying (1) are given by

x=X(p,q,k,s) = (p*-3pg®)(k +s) +(3p°q—°)(k —s)
y =Yy(p,a,k,s)=(p*-3pg?)(k —5)+ (g —3p®a)(k +5)
2=2(p,ak,5) =2((p*~3pa?)(k+5)+ (3p’q—*)(k—9))

w(p,q) = p®+q°
Properties

1) x(alk,s)= k(2cp2 +tgn—0a —2)+s(cpg ~Clg 4 +2)
y(1b,2,3)+17b+1- p}

cpy

2(a,2,s,9)
2s

4) W(Z”,nZ”) = jal,, +wo,

= Nasty number

3) = p3+cp; +t2a —(29a —Cljp, + 7a+3)

5) x(Lb,1,2)+w(Lb)—cpd +tg, =4(mod10)
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Pattern 2
Rewrite (3) as

u? +v2 :(k2+32)w3 *] ©)
(m2 —n?4 2imn)(m2 —n? —2imn)
2
(m2 +n2)
Using (4) and (6), in (5) it is written in factorizable form as
(m2 —n?4 2imn)(m2 —n? —2imn)

2
(m2 +n2)

Write1 as, 1= (6)

U+iv)(u—iv) = (k +is)(k —is)(p+ig)®(p—iq)®

Which is equivalent to the system of equations,

(m2 —n? +2imn)
(m?+n)

(m2 —n?- 2imn)
(m2 + nZ)

On equating the real and imaginary parts we obtain

! z(mz—imz)(((m2 ~n?)(k(p® ~3pg?) + s(q® ~3p%a)) | + 2mn(k(3p%q - 47) + s(p ~3pc?)|

1

v:m(((m2 ~n?)(s(p* ~3pg?) +k(3p?a-a?)) |+ 2mn(s(a® ~3p%a) + k(p’ —3pq2)))

(u+iv) = (k+is)(p+ig)®

(u-iv) = (k—is)(p—ig)®

Replacing p by (m2 + n2) P and g by (m2 + nZ)Q in the above equations, we have
u=(m?+n?) (((m2 —n2)(k(P*~3PQ?) +5(Q° ~3P?Q) )+ 2mn (k(3P?Q - Q%) + (P —3PQ2)))
v=(m?+n?) (((m2 —n?)(5(P~3PQ2) +k(3PXQ-Q?) |+ 2mn(s(Q* ~3P?Q) +k(P? —3PQ2)))

Substituting the values of u and v in (2), the non-zero distinct integral values of X, y, z and w satisfying
(1) are given by

2[((m® =n?)((k+8)(P° ~3PQ) + (k-9)(Q° ~3P°Q)

x=x(m,n,k,s,P,Q)= (m2 +n®
+2mn((k-$)(3P*°Q-Q°%) + (k+s)(P* ~3PQ?))

2[((m?=n?)((e-9)(P° ~3PQ%) + (k +9)(Q*~3P?Q) )

y=y(m,nk,s,P,Q)=(m?+n?
( ) ( +2mn((k+s)(3P2Q—Q3)+(k—s)(3PQ2—P3))
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o[ ((m?-n?)(k(P°~3PQ%) +5(Q*-3P?Q)) )+

~ o m2 . 2
z=z(mnk,s,P.Q)=2(m’ +n?) 2mn (k(3P?Q-Q®) +5(P*~3PQ?)

2
w(m,n, P,Q) :(m2 +n2) (P2 +Q2)
Properties

D x(@LkkP,1)=8k(cpy 6ty +1g )

2 y(225, 2s,1,Q)+504s(2 Py +t81Q) =504s(6Q +1)
3 (33251Q)+58324(2pd +tigq + g —2) =0

4 w(34,2"1)-625mery, =1250

Pattern 3
Write 1 as,
-\2n -\2N
1+1 1-1
@) ) o
2 n
Using (4) and (7) in (5) and by applying the same procedure in pattern 2, we get the non-zero distinct
integral values of x, y, z and w satisfying (1) are given by

x=x(nk,s,p,q)= cosn?”((k +5)(p®-3pg?) +(k—s)(3p*q —q3))+

sin % ((k=s)(p° ~3pa?) + (k +)(e° ~3p°0))
y=y(nks p,q) :cos%”((k ~s)(P*-3pg?) +(k +s)(q° —3p2q))+
sin 2% ((k-+5) @p%a-0%) + (k-s)(a° ~3p°a))

n
cos77[(k(p3 —3pq2)+5(0|3 —3DZOI))
z=z2(nk,s,p,q)=2

.. N
~sin—(k@p?a-q*) +s(p° ~3pa”))

w=w(p,q) = p* +¢°
Properties

1) x(4,kk,p1)-y(4kKk, p,l)—Zk(1+cpg)=O

2) w(2",2")=carl,+ky,+1

4) y(1,2,1,p,2)+3p; =L(mod9)

5 x(6119-19)+y(6119-10)-6 pao +15q+10g, =10
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CONCLUSION
To conclude one may consider biquadratic equation with multivariables(>5)and search for their non-zero
distinct integer solutions along with their corresponding properties.
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