Research Article

ON THE NON-HOMOGENEOUS BIQUADRATIC EQUATION WITH 4 UNKNOWNS $x^3 + y^3 + 2z^3 = 3xyz + 6(k^2 + s^2)(x + y)w^3$

Gopalan M.A.¹, *Geetha K.² and Manju Somanath³

¹Department of Mathematics, Shrimathi Indira Gandhi College, Trichy ²Department of Mathematics, Cauvery College for Women, Trichy ³Department of Mathematics, National College, Trichy *Author for Correspondence

ABSTRACT

The non-homogeneous biquadratic equation with four unknowns given by $x^3 + y^3 + 2z^3 = 3xyz + 6(k^2 + s^2)(x + y)w^3$ is considered and analyzed for finding its non zero distinct integral solutions. Introducing the linear transformations x = u + v, y = u - v z = 2u and employing the method of factorization, different patterns of non zero distinct integer solutions of the equation under the above equation are obtained. A few interesting relations between the integral solutions and the special numbers namely Polygonal numbers, Pyramidal numbers, Centered Polygonal numbers, Centered Pyramidal numbers, Thabit-ibn-Kurrah number, Carol number, Mersenne number are exhibited.

Keywords: Non-Homogeneous Equation, Integral Solutions, Polygonal Numbers, Pyramidal Numbers and Special Number

2010 Mathematics Subject Classification Code: 11D25 Notation

 $t_{m,n}$ = Polygonal number of rank n with sides m

 p_m^n = Pyramidal number of rank n with sides m

 $ct_{m,n}$ = Centered Polygonal number of rank n with sides m

 cp_m^n = Centered Pyramidal number of rank n with sides m

 g_n = Gnomonic number

 $Tha_n = Thabit-ibn-Kurrah number$

 $car l_n = Carol number$

 $Mer_n = Mersenne number$

 $ky_n =$ Kynea number

 $wo_n = Woodhall number$

 p_n = Pronic number

INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic Diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity (Carmichael, 1959; Dickson, 1952; Gopalan and Pandichelvi, 2009). In this context one may refer (Gopalan and Sangeetha, 2010; Gopalan and Sangeetha, 2010; Gopalan and Sangeetha, 2011; Gopalan and Sivkami, 2013; Manju *et al.*, 2012; Manju *et al.*, 2011; Sangeetha *et al.*, 2014) for various problems on the biquadratic Diophantine equations. However, often we come across non-homogeneous biquadratic equations and as such one may require its integral solution in its most general form. This paper concern with the non homogeneous biquadratic equation with four

Research Article

unknowns $x^3 + y^3 + 2z^3 = 3xyz + 6(k^2 + s^2)(x + y)w^3$ for determining its infinitely many non-zero integral solutions. Also, a few interesting properties among the solutions are presented.

Method of Analysis

The biquadratic equation with four unknowns to be solved for its non-zero distinct integral solution is

$$x^{3} + y^{3} + 2z^{3} = 3xyz + 6(k^{2} + s^{2})(x + y)w^{3}$$
(1)

Consider the transformations

$$x = u + v$$

$$x = u + v$$

$$y = u - v$$

$$z = 2u$$
(2)

On substituting (2) in (1), we get

$$u^2 + v^2 = (k^2 + s^2)w^3 (3)$$

In what follows we illustrate the methods of obtaining patterns of integer solutions to (1)

Pattern 1

Assume
$$w = p^2 + q^2 = (p + iq)(p - iq)$$
 (4)

Using (4) in (3), and employing the method of factorization we get

$$(u+iv)(u-iv) = (k+is)(k-is)(p+iq)^3(p-iq)^3$$

Which is equivalent to the system of equations,

$$u+iv=(k+is)(p+iq)^3$$

$$u-iv=(k-is)(p-iq)^3$$

On equating real and imaginary parts, we obtain

$$u = u(p,q,k,s) = kp^3 - 3pq^2k + sq^3 - 3p^2qs$$

$$v = v(p,q,k,s) = sp^3 + 3pq^2k - kq^3 - 3p^2qs$$

On substituting u and v in (2) we get the values of x, y and z. The non-zero distinct integrals values of x, y, z and w satisfying (1) are given by

$$x = x(p,q,k,s) = (p^3 - 3pq^2)(k+s) + (3p^2q - q^3)(k-s)$$

$$y = y(p,q,k,s) = (p^3 - 3pq^2)(k-s) + (q^3 - 3p^2q)(k+s)$$

$$z = z(p,q,k,s) = 2((p^3 - 3pq^2)(k+s) + (3p^2q - q^3)(k-s))$$

$$w(p,q) = p^2 + q^2$$

Properties

1)
$$x(a,1,k,s) = k(2cp_a^6 + t_{8,n} - g_a - 2) + s(cp_a^6 - ct_{6,a} + 2)$$

2)
$$\frac{y(1,b,2,3)+17b+1-p_b^3}{cp_b^4}$$
 = Nasty number

3)
$$\frac{z(a,2,s,s)}{2s} = p_a^5 + cp_a^3 + t_{12,a} - (2g_a - ct_{12,a} + 7a + 3)$$

4)
$$w(2^n, n2^n) = jal_{2n} + wo_n$$

5)
$$x(1,b,1,2) + w(1,b) - cp_b^6 + t_{18,b} \equiv 4 \pmod{10}$$

Research Article

Pattern 2

Rewrite (3) as

$$u^{2} + v^{2} = (k^{2} + s^{2})w^{3} *1$$
(5)

Write 1 as,
$$1 = \frac{\left(m^2 - n^2 + 2imn\right)\left(m^2 - n^2 - 2imn\right)}{\left(m^2 + n^2\right)^2}$$
 (6)

Using (4) and (6), in (5) it is written in factorizable form as

$$(u+iv)(u-iv) = (k+is)(k-is)(p+iq)^{3}(p-iq)^{3} \frac{\left(m^{2}-n^{2}+2imn\right)\left(m^{2}-n^{2}-2imn\right)}{\left(m^{2}+n^{2}\right)^{2}}$$

Which is equivalent to the system of equations,

$$(u+iv) = (k+is)(p+iq)^3 \frac{\left(m^2 - n^2 + 2imn\right)}{\left(m^2 + n^2\right)}$$

$$(u-iv) = (k-is)(p-iq)^{3} \frac{\left(m^{2}-n^{2}-2imn\right)}{\left(m^{2}+n^{2}\right)}$$

On equating the real and imaginary parts we obtain

$$u = \frac{1}{\left(m^2 + n^2\right)} \left(\left(\left(m^2 - n^2\right) \left(k(p^3 - 3pq^2) + s(q^3 - 3p^2q) \right) \right) + 2mn \left(k(3p^2q - q^3) + s(p^3 - 3pq^2) \right) \right)$$

$$v = \frac{1}{\left(m^2 + n^2\right)} \left(\left(\left(m^2 - n^2\right) \left(s(p^3 - 3pq^2) + k(3p^2q - q^3)\right) \right) + 2mn\left(s(q^3 - 3p^2q) + k(p^3 - 3pq^2)\right) \right)$$

Replacing p by $(m^2 + n^2)P$ and q by $(m^2 + n^2)Q$ in the above equations, we have

$$u = \left(m^2 + n^2\right)^2 \left(\left(\left(m^2 - n^2\right)\left(k(P^3 - 3PQ^2) + s(Q^3 - 3P^2Q)\right)\right) + 2mn\left(k(3P^2Q - Q^3) + s(P^3 - 3PQ^2)\right)\right)$$

$$v = \left(m^2 + n^2\right)^2 \left(\left(\left(m^2 - n^2\right)\left(s(P^3 - 3PQ^2) + k(3P^2Q - Q^3)\right)\right) + 2mn\left(s(Q^3 - 3P^2Q) + k(P^3 - 3PQ^2)\right)\right)$$

Substituting the values of u and v in (2), the non-zero distinct integral values of x, y, z and w satisfying (1) are given by

$$x = x(m, n, k, s, P, Q) = (m^2 + n^2)^2 \left(\left((m^2 - n^2)((k+s)(P^3 - 3PQ^2) + (k-s)(Q^3 - 3P^2Q)) \right) + 2mn((k-s)(3P^2Q - Q^3) + (k+s)(P^3 - 3PQ^2)) \right)$$

$$y = y(m, n, k, s, P, Q) = (m^2 + n^2)^2 \begin{pmatrix} ((m^2 - n^2)((k - s)(P^3 - 3PQ^2) + (k + s)(Q^3 - 3P^2Q))) \\ +2mn((k + s)(3P^2Q - Q^3) + (k - s)(3PQ^2 - P^3)) \end{pmatrix}$$

Research Article

$$z = z(m, n, k, s, P, Q) = 2(m^2 + n^2)^2 \left(\left((m^2 - n^2)(k(P^3 - 3PQ^2) + s(Q^3 - 3P^2Q)) \right) + 2mn(k(3P^2Q - Q^3) + s(P^3 - 3PQ^2)) \right)$$

$$w(m,n,P,Q) = (m^2 + n^2)^2 (P^2 + Q^2)$$

Properties

1)
$$x(1,1,k,k,P,1) = 8k(cp_p^{12} - 6t_{3,p} + t_{8,p})$$

2)
$$y(2,2,s,2s,1,Q) + 504s(2p_Q^9 + t_{8,Q}) = 504s(6Q+1)$$

3)
$$(3,3,2,s,1,Q) + 58324(2p_Q^8 + t_{18,Q} + g_Q - 2) = 0$$

4)
$$w(3,4,2^n,1)-625mer_{2n}=1250$$

Pattern 3

Write 1 as.

$$1 = \frac{\left(1+i\right)^{2n} \left(1-i\right)^{2n}}{2^{2n}} \tag{7}$$

Using (4) and (7) in (5) and by applying the same procedure in pattern 2, we get the non-zero distinct integral values of x, y, z and w satisfying (1) are given by

$$x = x(n, k, s, p, q) = \cos \frac{n\pi}{2} ((k+s)(p^3 - 3pq^2) + (k-s)(3p^2q - q^3)) +$$

$$\sin \frac{n\pi}{2} ((k-s)(p^3-3pq^2)+(k+s)(q^3-3p^2q))$$

$$y = y(n, k, s, p, q) = \cos \frac{n\pi}{2} ((k-s)(P^3 - 3pq^2) + (k+s)(q^3 - 3p^2q)) +$$

$$\sin \frac{n\pi}{2} \Big((k+s)(3p^2q-q^3) + (k-s)(q^3-3p^2q) \Big)$$

$$z = z(n, k, s, p, q) = 2 \begin{bmatrix} \cos\frac{n\pi}{2} \left(k(p^3 - 3pq^2) + s(q^3 - 3p^2q) \right) \\ -\sin\frac{n\pi}{2} \left(k(3p^2q - q^3) + s(p^3 - 3pq^2) \right) \end{bmatrix}$$

$$w = w(p,q) = p^2 + q^2$$

Properties

1)
$$x(4,k,k,p,1)-y(4,k,k,p,1)-2k(1+cp_p^6)=0$$

2)
$$w(2^n, 2^n) = car 1_n + ky_n + 1$$

3)
$$z(4,1,1,p,1) - 2w(p,1) + 4t_{9,p} + 20p = 2p_p^3$$

4)
$$y(1,2,1,p,1) + 3p_p^5 \equiv 1 \pmod{9}$$

5)
$$x(6,1,1,q-1,q) + y(6,1,1,q-1,q) - 6p_q^{10} + 15q + 10g_q = 10$$

Research Article

CONCLUSION

To conclude one may consider biquadratic equation with multivariables(≥5)and search for their non-zero distinct integer solutions along with their corresponding properties.

REFERENCES

Carmichael RD (1959). The Theory of Numbers and Diophantine Analysis (Dover publications) New York.

Dickson LE (1952). History of Theory of Numbers (Chelsa Publishing company) New York.

Gopalan MA and Pandichelvi V (2009). On the solutions of the Biquadratic equation $(x^2 - y^2)^2 = (z^2 - 1)^2 + w^4$, International conference on Mathematical methods and Computation 24-25

Gopalan MA and Sangeetha G (2010). Integral solutions of Ternary Quartic equation $x^2 - y^2 + 2xy = z^4$, Antarctica Journal of Mathematics **7**(1) 95-101.

Gopalan MA and Sangeetha G (2010). Integral solutions of non-homogeneous Quartic equation $x^4 - y^4 = (2\alpha^2 + 2\alpha + 1)(z^2 - w^2)$, *Journal of Food Science and Technology* **4**(3) 15-21.

Gopalan MA and Sangeetha G (2011). Integral solutions of Non-homogeneous biquadratic $x^4 + x^2 + y^2 - y = z^2 + z$, *Acta Ciencia Indica* **XXXVII**(4) 799-803.

Gopalan MA and Sivkami B (2013). Integral solutions of quartic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, Antarctica Journal of Mathematics **10**(2) 151-159.

Manju Somanath, Sangeetha G and Gopalan MA (2012). Integral solutions of biquadratic equation with four unknowns given by $xy + (k^2 + 1)z^2 = 5w^2$, *Pacific-Asian Journal of Mathematics* **6**(2) 185-190.

Manju Somanath, Sangeetha G and Gopalan MA (2011). Integral solutions of non-homogeneous Quartic equation $x^4 - y^4 = (k^2 + 1)(z^2 - w^2)$, Archimedes Journal of Mathematics 1(1) 51-57.

Sangeetha G, Manju Somanath, Gopalan MA and Pushparani (2014). Integral solutions of the homogeneous biquadratic equation with five unknowns $(x^3 + y^3)z = (w^2 - p^2)R^2$, International conference on Mathematical methods and Computation 221-226.