International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (3) July-September, pp. 71-73/Durge

Research Article

n-fold Ring A =
$$(A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$$

*ManoharDurge

ANC, AnandwanWarora *Author for Correspondence

ABSTRACT

In this Article an attempt is made to put the Concept of n-fold Ring $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$.

Keywords: n-fold Ring, semi group, binary operation, Algebraic Extension, Code, zero element of n fold ring, n-fold ring $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ with unity, Abelian n-fold ring, Splitting field of F[x], Zero divisor in n-fold ring, n-fold integral domain, n-fold ideal, n-fold ring homomorphism, n-fold principle ideal ring, Kernel of n fold ring homomorphism, n-fold division ring, n-fold field, n-fold celing polynomial ring, n-fold near ring, n-fold hemi ring, n-fold non associative ring, n-fold near ring

INTRODUCTION

Herstein cotes in (1992)

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by*, such that

1 a, b \in G implies that $a*b \in G$

2 a, b, c \in G implies that (a*b)*c = a*(b*c)

3 There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$

4 For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every $a, b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set R is said to be an associative ring if in R there are defined two operations, defined by + and * respectively, such that for all a,b,c in R:

1 a+b is in R.

2 a+b = b+a.

3(a+b)+c = a+(b+c).

4 There is an element 0 in R such that $a+0 = a, \forall a \in R$

5 There exist an element -a in R such that a + (-a) = 0.

6 a*b is in R

7 a*(b*c) = (a*b)*c.

8 a *(b+c) = a * b + a * c and (b+c) * a = b*a + c*a.

It may very well happen, or not happen, that there is an element 1 in R such that a*1 = 1*a = a for every a in R; if there is such we shall describe R as a ring with unit element.

If the multiplication of R is such that a*b = b*a for every a, b in R, then we call R a commutative ring.

MATTER (DISCUSSION)

n-foldRing

Let A be a non-empty set and $\theta_1, \theta_2, \theta_3, \dots, \theta_{n+1}$ be binary operations on A. Then $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is said to be n fold ring if

1) (A, θ_1) is an abelian group

2) (A, θ_2) is semi group, (A, θ_3) is semi group,, (A, θ_{n+1}) is semi group

3) θ_2 is distributive over θ_1 , θ_3 is distributive over θ_1 ,, θ_{n+1} is distributive over θ_1 . Exa01.

$$A = \{a_0G_0 + a_1G_1 + \dots + a_{n-1}G_{n-1} + a_nG_n / a_i \in F \text{ and } n \in N \& G_i \in C(P)\}$$

Where $(P) = class\ of\ algebriac\ structures$, P: Set of Codes in Universe.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (3) July-September, pp. 71-73/Durge

Research Article

Exa02.

$$A = \{a_0 + a_1x_1 + \dots + a_{n-1}x_{n-1} + a_nx_n / a_i \in F \text{ and } n \in N\},\$$

{ x_1, \dots, x_{n-1}, x_n } are in Algebraic Extension of F.

Exa03.

$$A = \{a_0 + a_1x_1 + \dots + a_{n-1}x_{n-1} + a_nx_n / a_i \in F \text{ and } n \in N\},$$

 $\{x_1, \dots, x_{n-1}, x_n\}$ are in Splitting field of F[x].

Exa04.

$$A = \{a_0G_0 + a_1G_1 + \dots + a_{n-1}G_{n-1} + a_nG_n \mid a_i \in F \text{ and } n \in N \& G_i \in C(P)\}$$
 Where $C(P) = class \text{ of algebriac structures of Splitting field of } F[x].$

zero element of n fold ring

Identity of A with respect to θ_1 is known as zero element of n fold ring and it is denoted by 0.

n-fold Ring A = $(A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ with Unity

 $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is n fold ring is said to be n fold ring with unity if multiplicative identity of A is common with respect to all binary operations $\theta_2, \theta_3, \dots, \theta_{n+1}$ and it is denoted by 1.

Commutative / Abelian n-fold Ring
$$A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$$

An n fold ring $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is said to be commutative or abelian if A is commutative with respect to all binary operation i.e. $\theta_1, \theta_2, \theta_3, \dots, \theta_{n+1}$.

Zero Divisor in n-fold Ring=
$$(A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$$

An element $0 \neq a \in A$ is said to be zero divisor of n fold ring $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ if $\exists b \neq 0 \in A$ such that ab = 0 with respect to any binary operation $\theta_2, \theta_3, \dots, \theta_{n+1}$.

n-foldIntegral Domain

n fold commutative ring with unity is said to be n fold integral domain if it has no zero divisor.

n-foldIdeal

Let U be any subset of n fold ring A is said to be n fold ideal

if 1. U is n fold sub ringAnd 2. $\forall u \in U \text{ and } r \in A \rightarrow ur \& ru$ are both in U with respect to binary operation $\theta_2, \theta_3, \dots, \theta_{n+1}$.

n-foldRing Homomorphism

Let
$$A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$$

 $B = (B, \psi_1, \psi_2, \psi_3, \dots, \psi_{n+1})$ be any two n- fold rings.

A mapping H from A to B if

$$\begin{array}{ccc} H(a\theta_1b) = H(a)\psi_1H(b), & \forall \ a,b \in A \\ H(a\theta_2b) = H(a)\psi_2H(b), & \forall \ a,b \in A \\ H(a\theta_3b) = H(a)\psi_3H(b), & \forall \ a,b \in A \\ & \downarrow & \downarrow \downarrow & \downarrow \\ & \downarrow & \downarrow \downarrow & \downarrow \\ H(a\theta_{n+1}b) = H(a)\psi_{n+1}H(b), & \forall \ a,b \in A \end{array}$$

n-fold Principle Ideal Ring

Let A be a n fold ring is said to be principle ideal ring if every ideal of n fold R is principle ideal.

Kernel of n Fold Ring Homomorphism

 $H: A \rightarrow B$ be a n-fold ring homomorphism

$$K(H) = \{ a \in A \mid H(a) = 0 = \text{zero element of } B \}$$

n-foldDivision Ring

A n fold ring is said to be n fold division ring if it is not n fold commutative ring and inverse of each non zeroelement with respect to each binary operation exist.

n-foldField

A commutative n fold division ring is known as n fold field.

n-foldCelingPolynomial Ring

Let $F = \text{fieldand} = \{x \mid x = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid n \in \mathbb{N} \ \& a_i \in F, x \text{ is in determinate} \}$, $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is a n fold celing polynomial ring if

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (3) July-September, pp. 71-73/Durge

Research Article

- 1. (A, θ_1) is an abelian group
- 2. (A, θ_2) is semi group.
- 3. (A, θ_3) is semi group.

 $\downarrow\downarrow$ \downarrow \downarrow

 (A, θ_{n+1}) is semi group.

4. θ_2 , θ_3 , θ_{n+1} is distributive over θ_1 .

n-foldHemi Ring

Let A be any non-empty set and $\theta_1, \theta_2, \dots, \theta_{n+1}$ are binary operations on A.

then $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is said to be hemi ring if

- 1. (A, θ_1) is monoid.
- 2. (A, θ_2) is monoid.
- 3. (A, θ_3) is monoid.

 \downarrow $\downarrow\downarrow$ \downarrow \downarrow

 (A, θ_{n+1}) is monoid.

4. θ_2 , θ_3 , θ_{n+1} is distributive over θ_1 .

Exa:-A = { $a_0 + a_1x_1 + \cdots + a_nx_n / a_i \in R$ } is a n fold hemi ring if R is hemi ring.

n-foldNear Ring

Let A be any non-empty set $\text{and}\theta_1, \theta_2, \dots, \theta_{n+1}$ are binary operations on A then $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is said to be n fold near ring if

- 1. (A, θ_1) is not necessary abelian group.
- 2. (A, θ_2) is semi group.
- 3. (A, θ_3) is semi group

 $\downarrow\downarrow$ \downarrow \downarrow

 (A, θ_{n+1}) is semi group.

4. θ_2 , θ_3 , θ_{n+1} is distributive over θ_1 .

Exa:-A = { $a_0 + a_1x_1 + \cdots + a_nx_n / a_i \in R$ } is a n fold near ring if R is near ring.

n-foldNon Associative Ring

Let A be any non-empty set.And $\theta_1, \theta_2, \dots, \theta_{n+1}$ are binary operations on A then $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ is said to be n fold non associative ring if

- 1. (A, θ_1) is abelian group.
- 2. θ_2 , θ_3 , θ_{n+1} is distributive over θ_1 .

Exa:-A = { $a_0 + a_1x_1 + \cdots + a_nx_n / a_i \in R$ } is a n fold non associative ring if R is non associative ring.

CONCLUSION

From the above discussion we come to conclusion that n-fold Ring , zero element of n fold ring, n-fold ring $A = (A, \theta_1, \theta_2, \theta_3, \dots, \theta_{n+1})$ with unity, Abelian n-fold ring, Splitting field of F[x], Zero divisor in n- fold ring, n- fold integral domain, n- fold ideal, n-fold ring homomorphism, n-fold principle ideal ring, Kernel of n fold ring homomorphism, n- fold division ring, n- fold field, n- fold celing polynomial ring, n-fold near ring, n- fold hemi ring, n- fold non associative ring, n-fold near ring are defined.

ACKNOWLEDGEMENT

This is my sincere efforts towards realization of Unchanging Truth. This work is dedicated to my spiritual teacher Sri SriRamakrishana who practices Vedanta for a whole life and works for the masses.

REFERENCES

Herstein IN (1992). *Topics In Algebra*, 2^{nd} edition (Wiley Eastern Limited) ISBN: 0.85226.354.6.26 - 256.