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ABSTRACT 

The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, 

and others by preserving the recurrence relation. In this paper, we study a new generalization  𝐺𝑛 , with 

initial conditions 𝐺0 = 0  and 𝐺1 = 1  which is generated by the recurrence relation 𝐺𝑛 = 𝑎𝐺𝑛−1 +
𝑏𝐺𝑛−2 , for all 𝑛 ≥ 2, where a and b are nonzero real numbers. Some well-known sequences are special 

cases of this generalization. The Fibonacci sequence is a special case of  𝐺𝑛  with 𝑎 = 𝑏 = 1. Pell’s 

sequence is  𝐺𝑛  with 𝑎 = 2, 𝑏 = 1 and the k-Fibonacci sequence is  𝐺𝑛  with 𝑎 = 𝑘, 𝑏 = 1. We shall 

define Binet’s formula and generating function for Generalized Fibonacci sequence  𝐺𝑛 . Mainly, 

Induction method and Binet’s formula will be used to establish properties for Generalized Fibonacci 

sequence 𝐺𝑛 .  

  

Keywords: Fibonacci Sequence, Lucas Sequence, Generalized Fibonacci Sequence, Generalized Lucas 
Sequence 

  

INTRODUCTION 

Fibonacci numbers are perhaps most famous for appearing in the rabbit breeding problem, introduced by 

Leonardo de Pisa in 1202 in his book called Liber Abaci, they remain fascinating and mysterious to 

people today. However, they also occur in Pascal’s triangle (Koshy, 2001), in Pythagorean triples (Koshy, 
2001), computer algorithms (Knott, 1996-2014; Stojmenovic, 2000; Fredman and Tarjan, 1987), some 

areas of algebra (Feingold, 1980; Suck et al., 2002; Schork, 2007), graph theory (Chebotarev, 2008; 

Bogdonowicz, 2008), quasicrystals (Atkins and Geist, 1987; Zubov et al., 1994), and many areas of 

mathematics. They occur in a variety of other fields such as finance, art, architecture, music, etc., (See 
Knott (1996-2014) for extensive resources on Fibonacci numbers.) The Fibonacci sequence is a source of 

many identities as appears in the work of Vajda (1989), Harris (1965) and Carlitz (1970). 

The Fibonacci sequence  𝐹𝑛  is defined by 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 , for all 𝑛 ≥ 2 , with initial conditions 

𝐹0 = 0 and 𝐹1 = 1 . Also the sequence of Lucas numbers  𝐿𝑛  is defined by 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 , for all 

𝑛 ≥ 2, with initial conditions 𝐿0 = 2 and 𝐿1 = 1 . 

The Binet’s formula for Fibonacci sequence and Lucas sequence is given by 

𝐹𝑛 =  
𝛼𝑛−𝛽𝑛

𝛼−𝛽
=  

1

 5
  

1+ 5

2
 
𝑛

−  
1− 5

2
 
𝑛

  and 𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛 =   
1+ 5

2
 
𝑛

−  
1− 5

2
 
𝑛

  respectively. 

Where 𝛼 =  
1+ 5

2
 =Golden ratio = 1.618 and 𝛽 =  

1− 5

2
 = −0.618 

In this paper, we present different properties of the Generalized Fibonacci sequence  𝐺𝑛  which is defined 

by 𝐺𝑛 = 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2  , for all 𝑛 ≥ 2  with 𝐺0 = 0  and 𝐺1 = 1 ; where a and b are nonzero real 

numbers. 

The few terms of the sequence  𝐺𝑛  are: 0, 1, a, a
2
+2ab, a

4
+3a

2
b+b

2
, a

5
+4a

3
b+3ab

2
, …and so on. The 

Generalized Lucas sequence  𝐾𝑛  which is defined by 𝐾𝑛 = 𝑎𝐾𝑛−1 + 𝑏𝐾𝑛−2 , for all 𝑛 ≥ 2 with 𝐾0 = 2 

and 𝐾1 = 1; where a and b are nonzero real numbers. 

Generating Function for the Generalized Fibonacci Sequence 

Generating functions provide a powerful method for solving linear homogeneous recurrence relations. 

Even though generating functions are typically used in conjunction with linear recurrence relations with 

constant coefficients, we will systematically make use of them for linear recurrence relations with 
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nonconstant coefficients. In this section, we consider the generating function for the generalized 

Fibonacci sequence and derive some of the most interesting identities satisfied by this sequence. 

 

Theorem 2.1. The generating function for the generalized Fibonacci sequence given by  𝐺𝑛  is  𝑥 =
𝑥

1−𝑎𝑥−𝑏𝑥2 . 

Proof: Let 𝑔 𝑥 = 𝐺0 + 𝐺1𝑥 + 𝐺2𝑥
2 + ⋯+ 𝐺𝑛𝑥

𝑛 + ⋯  be the generating function of the generalized 

Fibonacci sequence  𝐺𝑛 , we note that 𝐺0 = 0, 𝐺1 = 1 . 

Now, 𝑔 𝑥 = 𝐺0 + 𝐺1𝑥 + 𝐺2𝑥
2 + ⋯+ 𝐺𝑛𝑥

𝑛 + ⋯ 

𝑎𝑥𝑔 𝑥 = 𝑎𝐺0𝑥 + 𝑎𝐺1𝑥
2 + 𝑎𝐺2𝑥

3 + ⋯+ 𝑎𝐺𝑛𝑥
𝑛+1 + ⋯ 

𝑏𝑥2𝑔 𝑥 = 𝑏𝐺0𝑥
2 + 𝑏𝐺1𝑥

3 + 𝑏𝐺2𝑥
4 + ⋯+ 𝑏𝐺𝑛𝑥

𝑛+2 + ⋯ 

We will add the power series 𝑔 𝑥  , −𝑎𝑥𝑔 𝑥  , −𝑏𝑥2𝑔 𝑥  then we get,  

𝑔 𝑥 − 𝑎𝑥𝑔 𝑥 − 𝑏𝑥2𝑔 𝑥 =  𝐺0 + (−𝑎𝐺0 + 𝐺1)𝑥 +  −𝑏𝐺0 − 𝑎𝐺1 + 𝐺2 𝑥
2+.… . . …  

Here notice that if we take our rearranged recursion formula 𝐺𝑛 − 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2 = 0 , with 𝑛 = 2, we 

get 𝐺2 − 𝑎𝐺1 + 𝑏𝐺0 = 0 . Thus, the Co efficient of 𝑥2  term in our combined series is zero. In fact using 

the recursion formula, the co efficient of the terms after the 𝑥2  term we see they are all zero. 

Thus We have  𝑥 − 𝑎𝑥𝑔 𝑥 − 𝑏𝑥2𝑔 𝑥 =  𝐺0 + (−𝑎𝐺0 + 𝐺1)𝑥 , Since 𝐺0 = 0, 𝐺1 = 1  

∴  1 − 𝑎𝑥 − 𝑏𝑥2 𝑔 𝑥 = 𝑥  

∴  𝑔 𝑥 =  
𝑥

1−𝑎𝑥−𝑏𝑥2 =  𝐺𝑛
∞
𝑛=0 𝑥𝑛  , which is required generating function. 

Binet’s Formula for the Generalized Fibonacci Sequence 

Koshy refers to the Fibonacci numbers as one of the “two shining stars in the vast array of integer 

sequences. We may guess that one reason for this reference is the sheer quantity of interesting properties 

this sequence possesses. Further still, almost all of these properties can be derived from Binet’s formula. 
A main objective of this paper is to demonstrate that many of the properties of the Fibonacci sequence can 

be stated and proven for a much larger class of sequences, namely the generalized Fibonacci sequence. 

Therefore, we will state and prove Binet’s formula for the generalized Fibonacci sequence. 

 

Theorem 3.1. (Binet’s Formula)The terms of the generalized Fibonacci sequence  𝐺𝑛  are given by 

𝐺𝑛 =  
𝛼𝑛−𝛽𝑛

𝛼−𝛽
 ; where 𝛼 =

𝑎+ 𝑎2+4𝑏

2
 and 𝛽 =

𝑎− 𝑎2+4𝑏

2
 

Proof: We first express function 𝑔 𝑥  for 𝐺𝑛  as a sum of partial fractions. 

Let  1 − 𝑎𝑥 − 𝑏𝑥2 = (1 − 𝛼𝑥)(1 − 𝛽𝑥) 

Now Consider 𝑔 𝑥 =  
𝑥

1−𝑎𝑥−𝑏𝑥2 =
𝐴

1−𝛼𝑥
+

𝐵

1−𝛽𝑥
 

∴ 𝑥 = 𝐴 1 − 𝛽𝑥 +  𝐵(1 − 𝛼𝑥)  

If 𝑥 =
1

𝛽
 then 

1

𝛽
= 𝐵  1 −

𝛼

𝛽
  ⇒  

1

𝛽
= 𝐵  

𝛽−𝛼

𝛽
  

⇒ 𝐵 =  
1

𝛽 − 𝛼
 ⇒ 𝐵 =

−1

𝛼 − 𝛽
 

Similarly, If We take 𝑥 =
1

𝛼
 then we have 

1

𝛼
= 𝐴(1 −

𝛽

𝛼
) ⇒  𝐴 =

1

𝛼−𝛽
  

∴ 𝑔 𝑥 =  
𝑥

1 − 𝑎𝑥 − 𝑏𝑥2
=

1
𝛼 − 𝛽

1 − 𝛼𝑥
+

−1
𝛼 − 𝛽

1 − 𝛽𝑥
 

∴ 𝑔 𝑥 =
1

𝛼−𝛽
 𝛼𝑛𝑥𝑛∞
𝑛=0 −

1

𝛼−𝛽
 𝛽𝑛𝑥𝑛∞
𝑛=0   

∴ 𝑔 𝑥 =   
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
 

∞

𝑛=0

 𝑥𝑛   
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But, 𝑔 𝑥 =  𝐺𝑛
∞
𝑛=0  𝑥𝑛   

∴ 𝐺𝑛 =  
𝛼𝑛−𝛽𝑛

𝛼−𝛽
 Which is Binet’s formula for given generalized Fibonacci sequence. 

 

Properties of Generalized Fibonacci Sequence 

Theorem 4.1. Sum of first n terms of the Generalized Fibonacci sequence  𝐺𝑛   is 𝐺1 + 𝐺2 + ⋯+ 𝐺𝑛 =

 𝐺𝑖
𝑛
𝑖=1 =

𝑇𝑛+1+𝑏𝑇𝑛−1

𝑎+𝑏−1
 

 

Theorem 4.2. Sum of the first n terms with odd indices is  

𝐺1 + 𝐺3 + ⋯+ 𝐺2𝑛−1 =  𝐺2𝑖−1

𝑛

𝑖=1

=
1

1 − 𝑏
(1 + 𝑎 𝐺2 + 𝐺4 + ⋯+ 𝐺2𝑛  − 𝐺2𝑛+1) 

This identity becomes 

𝐺2𝑛+1 − 1 = 𝑎 𝐺0 + 𝐺2 + 𝐺4 + ⋯+ 𝐺2𝑛−2 +  𝑏 − 1   𝐺1 + 𝐺3 + ⋯+ 𝐺2𝑛−1   
Theorem 4.3. Sum of the first n terms with even indices is 

𝐺2 + 𝐺4 + ⋯+ 𝐺2𝑛 =  𝐺2𝑖

𝑛

𝑖=1

=
1

1 − 𝑏
(𝑎 𝐺1 + 𝐺3 + ⋯+ 𝐺2𝑛+1 − 𝐺2𝑛+2) 

This identity becomes 

𝐺2𝑛+2 =  𝑏 − 1  𝐺0 + 𝐺2 + 𝐺4 + ⋯+ 𝐺2𝑛  + 𝑎 𝐺1 + 𝐺3 + ⋯+ 𝐺2𝑛+1  
 

Theorem 4.4.Multiplication of two consecutive generalized Fibonacci numbers is given by  

𝐺𝑛𝐺𝑛+1 = 𝑎 𝐺𝑛
2 + 𝑏𝐺𝑛−1

2 + 𝑏2𝐺𝑛−2
2 + ⋯+ 𝑏𝑛−1𝐺1

2 + 𝑏𝑛𝐺0
2   

Proof: 𝐺𝑛 = 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2 and 𝐺𝑛+1 = 𝑎𝐺𝑛 + 𝑏𝐺𝑛−1 

∴ 𝐺𝑛𝐺𝑛+1 = 𝑎𝐺𝑛
2 +  𝑏𝐺𝑛𝐺𝑛−1   

= 𝑎𝐺𝑛
2 +  𝑏 𝑎𝐺𝑛−1

2 + 𝑏𝐺𝑛−1𝐺𝑛−2   
= 𝑎𝐺𝑛

2 +  𝑎𝑏𝐺𝑛−1
2 + 𝑏2𝐺𝑛−1𝐺𝑛−2 

= 𝑎𝐺𝑛
2 +  𝑎𝑏𝐺𝑛−1

2 + 𝑏2[𝑎𝐺𝑛−2
2 + 𝑏𝐺𝑛−2𝐺𝑛−3]  

= 𝑎𝐺𝑛
2 +  𝑎𝑏𝐺𝑛−1

2 + 𝑎𝑏2𝐺𝑛−2
2 + 𝑏3𝐺𝑛−2𝐺𝑛−3  ………………………………………… .. 

= 𝑎𝐺𝑛
2 +  𝑎𝑏𝐺𝑛−1

2 + 𝑎𝑏2𝐺𝑛−2
2 + ⋯+ 𝑎𝑏𝑛−1𝐺1

2 +  𝑏𝑛  𝑎𝐺0
2 + 𝑏𝐺0𝐺−1   

= 𝑎𝐺𝑛
2 +  𝑎𝑏𝐺𝑛−1

2 + 𝑎𝑏2𝐺𝑛−2
2 + ⋯+ 𝑎𝑏𝑛−1𝐺1

2 + 𝑎𝑏𝑛𝐺0
2  

∴ 𝐺𝑛𝐺𝑛+1 = 𝑎[𝐺𝑛
2 + 𝑏𝐺𝑛−1

2 + 𝑏2𝐺𝑛−2
2 + ⋯+ 𝑏𝑛−1𝐺1

2 + 𝑏𝑛𝐺0
2] 

∴ 𝐺𝑛𝐺𝑛+1 = 𝑎 𝐺𝑛
2𝑏𝑛−𝑘

𝑛

𝑘=0

 

 

Theorem 4.5. If 𝑈 =  0 𝑏
1 𝑎

  then 𝑈𝑛 =  
𝑏𝐺𝑛−1 𝐺𝑛
𝑏𝐺𝑛 𝐺𝑛+1

  

Proof: we prove this result by using principal mathematical induction,  

 For n=1 , we have 𝑈 =  
𝑏𝐺0 𝐺1

𝑏𝐺1 𝐺2
  

=  
0 𝑏
1 𝑎

  

Thus result to be proved is true for n=1. 
Suppose it is true for n=k. 

i.e. Let 𝑈𝑘 =  
𝑏𝐺𝑘−1 𝐺𝑘
𝑏𝐺𝑘 𝐺𝑘+1

  be true. 

Now 𝑈𝑘+1 = 𝑈𝑘𝑈 

=  
𝑏𝐺𝑘−1 𝐺𝑘
𝑏𝐺𝑘 𝐺𝑘+1

   
0 𝑏
1 𝑎
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=  
𝑏𝐺𝑘 𝑎𝐺𝑘 + 𝑏𝐺𝑘−1

𝑏𝐺𝑘+1 𝑎𝐺𝑘+1 + 𝑏𝐺𝑘
  

=  
𝑏𝐺𝑘 𝐺𝑘+1

𝑏𝐺𝑘+1 𝐺𝑘+2
  

Thus result is true for n=k+1. 

This proves the result by induction. 

 

Theorem 4.6. Prove that : 𝐺𝑚+𝑛 = 𝐺𝑚𝐺𝑛+1 + 𝑏𝐺𝑚−1𝐺𝑛  ;  𝐹𝑜𝑟 0 ≤ 𝑚 ≤ 𝑛 
Proof: We prove this result by mathematical induction,  

For n=1, 𝐺𝑚+1 = 𝐺𝑚𝐺2 + 𝑏𝐺𝑚−1𝐺1 

∴ 𝑎𝐺𝑚 +  𝑏𝐺𝑚−1 =  𝑎𝐺𝑚 +  𝑏𝐺𝑚−1 

∵ 𝐺1 = 1, 𝐺2 = 𝑎  
∴ result is true for n=1. 

Suppose result is true for n=k. 

∴  𝐺𝑚+𝑘 = 𝐺𝑚𝐺𝑘+1 + 𝑏𝐺𝑚−1𝐺𝑘   
Now we have to show that result is true for n=k+1. 

∴  𝐺𝑚+𝑘+1 = 𝑎𝐺𝑚+𝑘 + 𝑏𝐺𝑚+𝑘−1   

= 𝑎 𝐺𝑚𝐺𝑘+1 + 𝑏𝐺𝑚−1𝐺𝑘 + 𝑏 𝐺𝑚𝐺𝑘 + 𝑏𝐺𝑚−1𝐺𝑘−1  
= 𝐺𝑚  𝑎𝐺𝑘+1 + 𝑏𝐺𝑘  + 𝑏𝐺𝑚−1 𝑎𝐺𝑘 + 𝑏𝐺𝑘−1  
= 𝐺𝑚𝐺𝑘+2 + 𝑏𝐺𝑚−1𝐺𝑘+1 

∴  𝐺𝑚+𝑘+1 = 𝐺𝑚𝐺𝑘+1+1 + 𝑏𝐺𝑚−1𝐺𝑘+1   

∴ result is true for n=k+1. 

∴ by induction, we can say that, 𝐺𝑚+𝑛 = 𝐺𝑚𝐺𝑛+1 + 𝑏𝐺𝑚−1𝐺𝑛  

Note : if we take 𝑛 = 𝑛 −𝑚 ≥ 0 then above result can be written as  

𝐺𝑚+𝑛−𝑚 = 𝐺𝑚𝐺𝑛−𝑚+1 + 𝑏𝐺𝑚−1𝐺𝑛−𝑚  

i.e. 𝐺𝑛 = 𝐺𝑚𝐺𝑛−𝑚+1 + 𝑏𝐺𝑚−1𝐺𝑛−𝑚  
above identity also prove using matrix method,  

We know that 𝑈𝑚 × 𝑈𝑛 = 𝑈𝑚+𝑛  

We have, If 𝑈 =  
0 𝑏
1 𝑎

  then 𝑈𝑛 =  
𝑏𝐺𝑛−1 𝐺𝑛
𝑏𝐺𝑛 𝐺𝑛+1

  

∴   
𝑏𝐺𝑚−1 𝐺𝑚
𝑏𝐺𝑚 𝐺𝑚+1

  ×  
𝑏𝐺𝑛−1 𝐺𝑛
𝑏𝐺𝑛 𝐺𝑛+1

  =  
𝑏𝐺𝑚+𝑛−1 𝐺𝑚+𝑛

𝑏𝐺𝑚+𝑛 𝐺𝑚+𝑛+1
   

∴   
𝑏2𝐺𝑚−1𝐺𝑛−1 + 𝑏𝐺𝑚𝐺𝑛 𝑏𝐺𝑚−1𝐺𝑛 + 𝐺𝑚𝐺𝑛+1

𝑏2𝐺𝑚𝐺𝑛−1 + 𝑏𝐺𝑚+1𝐺𝑛 𝑏𝐺𝑚𝐺𝑛 + 𝐺𝑚+1𝐺𝑛+1

 =  
𝑏𝐺𝑚+𝑛−1 𝐺𝑚+𝑛

𝑏𝐺𝑚+𝑛 𝐺𝑚+𝑛+1
   

Now equating the corresponding entries, then 

∴ 𝑏2𝐺𝑚−1𝐺𝑛−1 + 𝑏𝐺𝑚𝐺𝑛 = 𝑏𝐺𝑚+𝑛−1 ⟹ 𝐺𝑚+𝑛−1 = 𝐺𝑚𝐺𝑛 + 𝑏𝐺𝑚−1𝐺𝑛−1 

∴ 𝑏𝐺𝑚−1𝐺𝑛 + 𝐺𝑚𝐺𝑛+1 = 𝐺𝑚+𝑛 ⟹ 𝐺𝑚+𝑛 = 𝐺𝑚𝐺𝑛+1 + 𝑏𝐺𝑚−1𝐺𝑛  

∴ 𝑏2𝐺𝑚𝐺𝑛−1 + 𝑏𝐺𝑚+1𝐺𝑛 = 𝑏𝐺𝑚+𝑛  ⟹ 𝐺𝑚+𝑛 = 𝐺𝑚+1𝐺𝑛 + 𝑏𝐺𝑚𝐺𝑛−1  

∴ 𝑏𝐺𝑚𝐺𝑛 + 𝐺𝑚+1𝐺𝑛+1 = 𝐺𝑚+𝑛+1  ⟹ 𝐺𝑚+𝑛+1 = 𝐺𝑚+1𝐺𝑛+1 + 𝑏𝐺𝑚𝐺𝑛   

 

Theorem 4.7. For any nonnegative integer n we have, 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2  = (−1)𝑛𝑏𝑛−1 

Proof: 𝐺𝑛 = 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2  
𝐺𝑛−1 = 𝑎𝐺𝑛−2 + 𝑏𝐺𝑛−3 and 

𝐺𝑛+1 = 𝑎𝐺𝑛 + 𝑏𝐺𝑛−1 

Now, 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2  =  𝑎𝐺𝑛 + 𝑏𝐺𝑛−1 𝐺𝑛−1 − 𝐺𝑛

2 

=  𝑎𝐺𝑛𝐺𝑛−1 + 𝑏𝐺𝑛−1
2 − 𝐺𝑛

2 

= 𝑏𝐺𝑛−1
2 + 𝐺𝑛( 𝑎𝐺𝑛−1 − 𝐺𝑛 ) 

=  𝑏𝐺𝑛−1
2 + 𝐺𝑛   −𝑏𝐺𝑛−2  =  𝑏𝐺𝑛−1

2 −  𝑏𝐺𝑛𝐺𝑛−2 

=  −𝑏 𝐺𝑛𝐺𝑛−2 − 𝐺𝑛−1
2   
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We can now repeat the above process on the last line to obtain,  

=  −𝑏 2 𝐺𝑛−1𝐺𝑛−3 − 𝐺𝑛−2
2   

=  −𝑏 3 𝐺𝑛−2𝐺𝑛−4 − 𝐺𝑛−3
2   …………………………….. 

=  −1 𝑛𝑏𝑛  𝐺1𝐺−1 − 𝐺0
2  

=  −1 𝑛𝑏𝑛−1  ( ∵ 𝐺1 = 1 & 𝐺−1 =
1

𝑏
 ∴ 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛

2  = (−1)𝑛𝑏𝑛−1 

which is known as cassini’s identity 

This identity also is prove using matrix ,  

We have, 𝑈 =  
0 𝑏
1 𝑎

  then  𝑈 = −𝑏 and 

𝑈𝑛 =  
𝑏𝐺𝑛−1 𝐺𝑛
𝑏𝐺𝑛 𝐺𝑛+1

  then  𝑈𝑛  = 𝑏𝐺𝑛−1𝐺𝑛+1 − 𝑏𝐺𝑛
2  

∴  𝑈𝑛  = 𝑏 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2   

∴  −𝑏 𝑛 = 𝑏 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2   

∴  −1 𝑛𝑏𝑛−1 =  𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2   

∴ 𝐺𝑛+1𝐺𝑛−1 − 𝐺𝑛
2 =  −1 𝑛𝑏𝑛−1  

 

Theorem 4.8. prove that : 𝛼𝑛 = 𝐺𝑛𝛼 + 𝑏𝐺𝑛−1 and 𝛽𝑛 = 𝐺𝑛𝛽 + 𝑏𝐺𝑛−1 

Proof: we prove this result by induction, if n=1 then 𝛼 = 𝐺1𝛼 + 𝑏𝐺0 

So, 𝛼 = 𝛼 as 𝐺1 = 1 𝑎𝑛𝑑 𝐺0 = 0 
There for result is true for n=1. 

Also, n=2 then 𝛼2 =
1

2
 𝑎2 + 2𝑏 + 𝑎 𝑎2 + 4𝑏  and  

𝐺2𝛼 + 𝑏𝐺1 = 
1

2
 𝑎2 + 2𝑏 + 𝑎 𝑎2 + 4𝑏  

Thus result is true for n=2. 

Suppose result is true for n=k. 

∴ 𝛼𝑘 = 𝐺𝑘𝛼 + 𝑏𝐺𝑘−1 is true 
Now we have to show that result is true for n=k+1. 

∴  𝛼𝑘+1 =  𝛼𝛼𝑘   

=  𝛼2𝐺𝑘 + 𝛼𝑏𝐺𝑘−1  

=  𝐺2𝛼 + 𝑏𝐺1 𝐺𝑘 + 𝛼𝑏𝐺𝑘−1 (∵ 𝛼2 = 𝐺2𝛼 + 𝑏𝐺1 

=  𝛼𝐺2𝐺𝑘 + 𝑏𝐺1𝐺𝑘 + 𝛼𝑏𝐺𝑘−1 
=  𝛼 𝑎𝐺𝑘 + 𝑏𝐺𝑘−1 + 𝑏𝐺𝑘  (∵ 𝐺1 = 1 & 𝐺2 = 𝑎 

=  𝛼𝐺𝑘+1 + 𝑏𝐺𝑘  
Thus result is true for n= k+1. 
So, by mathematical induction we can say that,  

𝛼𝑛 = 𝐺𝑛𝛼 + 𝑏𝐺𝑛−1, for all 𝑛 ∈ 𝑁 

Similarly, we can prove 𝛽𝑛 = 𝐺𝑛𝛽 + 𝑏𝐺𝑛−1 

 

Theorem 4.9. Prove that : 𝐺𝑛 − 𝑐𝑛−1 =  𝑎 − 𝑐 𝐺𝑛−1 +   𝑎 − 𝑐 𝑐 + 𝑏  𝐺0𝑐
𝑛−2 + 𝐺1𝑐

𝑛−3 + …+
𝐺𝑛−2 , 𝑤ℎ𝑒𝑟𝑒 1≤𝑐≤𝑎 

Proof: We prove this result by mathematical induction,  

For n=2,  

∴ 𝐺2 − 𝑐2−1 =  𝑎 − 𝑐 𝐺2−1 + [ 𝑎 − 𝑐 𝑐 + 𝑏]𝐺0 

∴ 𝑎𝐺1 + 𝑏𝐺0 − 𝑐 = (𝑎 − 𝑐)𝐺1  

∴ (𝑎 − 𝑐)𝐺1 = (𝑎 − 𝑐)𝐺1  

Thus result is true for n=2. 
Suppose result is true for n=k. 

∴ 𝐺𝑘 − 𝑐𝑘−1 =  𝑎 − 𝑐 𝐺𝑘−1 +   𝑎 − 𝑐 𝑐 + 𝑏  𝐺0𝑐
𝑘−2 + 𝐺1𝑐

𝑘−3 + ⋯+ 𝐺𝑘−2   
So, we have to only show that result is true for n=k+1. 
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∴  𝑎 − 𝑐 𝐺𝑘+1−1 +   𝑎 − 𝑐 𝑐 + 𝑏  𝐺0𝑐
𝑘+1−2 + 𝐺1𝑐

𝑘+1−3 + ⋯+ 𝐺𝑘+1−2 =  

 𝑎 − 𝑐 𝐺𝑘 +   𝑎 − 𝑐 𝑐 + 𝑏  𝐺𝑘−1 + 𝑐𝐺𝑘−2 + 𝑐2𝐺𝑘−3 + ⋯+ 𝑐𝑘−2𝐺1 + 𝑐𝑘−1𝐺0   

=  𝑎𝐺𝑘 + 𝑏𝐺𝑘−1 − 𝑐𝐺𝑘 + 𝑏 𝑐𝐺𝑘−2 + 𝑐2𝐺𝑘−3 + ⋯+ 𝑐𝑘−2𝐺1 + 𝑐𝑘−1𝐺0 

+  𝑎 𝑐𝐺𝑘−1 + 𝑐2𝐺𝑘−2 + ⋯+ 𝑐𝑘−1𝐺1 + 𝑐𝑘𝐺0 

− 𝑐 𝑐𝐺𝑘−1 + 𝑐2𝐺𝑘−2 + ⋯+  𝑐𝑘−1𝐺1 + 𝑐𝑘𝐺0  

= 𝐺𝑘+1 − 𝑐𝐺𝑘 + 𝑐 𝑎𝐺𝑘−1 + 𝑏𝐺𝑘−2 + 𝑐2 𝑎𝐺𝑘−2 + 𝑏𝐺𝑘−3 + ⋯+ 𝑐𝑘−1 𝑎𝐺1 +  𝑏𝐺0 − 𝑐2𝐺𝑘−1

− 𝑐3𝐺𝑘−2 −⋯− 𝑐𝑘−1𝐺2 − 𝑐𝑘𝐺1 − 𝑐𝑘+1𝐺0  
= 𝐺𝑘+1 − 𝑐𝐺𝑘 + 𝑐𝐺𝑘 + 𝑐2𝐺𝑘−1 + ⋯+ 𝑐𝑘−1𝐺2 − 𝑐2𝐺𝑘−1 −⋯− 𝑐𝑘−1𝐺2 − 𝑐𝑘   

= 𝐺𝑘+1 − 𝑐𝑘   

∴ 𝐺𝑘+1 − 𝑐𝑘 =  𝑎 − 𝑐 𝐺𝑘 +   𝑎 − 𝑐 𝑐 + 𝑏  𝐺0𝑐
𝑘−1 + 𝐺1𝑐

𝑘−2 + ⋯+ 𝐺𝑘−1  
Thus result is true for n=k+1. 
Hence the result. 

Note that if c=a in above result then we have,  

𝐺𝑛 − 𝑎𝑛−1 = 𝑏 𝐺0𝑎
𝑛−2 + 𝐺1𝑎

𝑛−3 + ⋯+ 𝐺𝑛−2  
i.e. 𝐺𝑛 = 𝑎𝑛−1 + 𝑏 𝑎𝑖−1𝐺𝑛−1−𝑖

𝑛−2
𝑖=1  

 

Connection Formulae 

Theorem 5.1. Prove that : 𝐾𝑛 = 𝐺𝑛 + 2𝑏𝐺𝑛−1,  

Proof: 𝐾𝑛 = 𝑎𝐾𝑛−1 + 𝑏𝐾𝑛−2 with 𝐾0 = 2 &  𝐾1 = 1 

Also, 𝐺𝑛 = 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2 with 𝐺0 = 0 &  𝐺1 = 1 
We prove this result by mathematical induction; 

For n=2, 𝐾2 = 𝑎𝐾1 + 𝑏𝐾0 = 𝑎 + 2𝑏 

and 𝐺2 + 2𝑏𝐺1 = 𝑎 + 2𝑏 

∴ 𝐾2 = 𝐺2 + 2𝑏𝐺1 is true. 
Thus result is true for n=2. 

Suppose result is true for n=k. 

∴ 𝐾𝑘 = 𝐺𝑘 + 2𝑏𝐺𝑘−1  
Now we have to show that given result is true for n=k+1.  

∴ 𝐾𝑘+1 = 𝐾𝑘 + 𝑏𝐾𝑘−1  

=  𝑎 𝐺𝑘 + 2𝑏𝐺𝑘−1  + 𝑏[𝐺𝑘−1 + 2𝑏𝐺𝑘−2  ]  
=  𝑎𝐺𝑘 + 𝑏𝐺𝑘−1  + 2𝑏[𝑎𝐺𝑘−1 + 𝑏𝐺𝑘−2]  
= 𝐺𝑘+1 + 2𝑏𝐺𝑘   

∴ 𝐾𝑘+1 = 𝐺𝑘+1 + 2𝑏𝐺𝑘+1−1  
Thus result is true for n=k+1. 

There for by induction, 𝐾𝑛 = 𝐺𝑛 + 2𝑏𝐺𝑛−1 

 

Theorem 5.2. Prove that : 𝐺𝑛𝐾𝑛 = 𝐺2𝑛 + (1 − 𝑎)𝐺𝑛
2  

Proof: We know that : 𝐺𝑚+𝑛 = 𝐺𝑚𝐺𝑛+1 + 𝑏𝐺𝑚−1𝐺𝑛  

∴ 𝐺𝑛+𝑛 = 𝐺𝑛𝐺𝑛+1 + 𝑏𝐺𝑛−1𝐺𝑛  
∴ 𝐺2𝑛 = 𝐺𝑛 [𝐺𝑛+1 + 𝑏𝐺𝑛−1] 
∴ 𝐺2𝑛 = 𝐺𝑛 [𝑎𝐺𝑛 + 𝑏𝐺𝑛−1 + 𝑏𝐺𝑛−1]  
∴ 𝐺2𝑛 = 𝐺𝑛 [𝑎𝐺𝑛 − 𝐺𝑛 + 𝐺𝑛 + 2𝑏𝐺𝑛−1]  
∴ 𝐺2𝑛 = 𝐺𝑛   𝑎 − 1 𝐺𝑛 + 𝐾𝑛   (∵ 𝐾𝑛 = 𝐺𝑛 + 2𝑏𝐺𝑛−1 

∴  𝐺2𝑛 =  𝑎 − 1 𝐺𝑛
2 + 𝐺𝑛𝐾𝑛   

∴ 𝐺𝑛𝐾𝑛  = 𝐺2𝑛 +  1 − 𝑎 𝐺𝑛
2  

 

Theorem 5.3. For generalized Fibonacci sequence defined by 𝐺𝑛 = 𝑎𝐺𝑛−1 + 𝑏𝐺𝑛−2 with relatively prime 

integers a and b then for all 𝑚 ≥ 1, 𝐺𝑚and 𝑏𝐺𝑚−1are relatively prime. 

Proof: First we claim that 𝐺𝑚  is relatively prime to b. 
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We know that : 𝐺𝑚 = 𝑎𝑚−1 + 𝑏 𝑎𝑖−1𝐺𝑚−1−𝑖
𝑚−2
𝑖=1  

Suppose 𝑑 > 1 is divisor of 𝐺𝑚  and b then d must be divide 𝑎𝑚−1  

i.e. 𝑑 𝑏  & 𝑑 ∕ 𝑎𝑚−1 

which is impossible as a and b are relatively prime. 

So, 𝑔𝑐𝑑 𝐺𝑚 , 𝑏 = 1 

Now we prove that 𝐺𝑚 and 𝐺𝑚−1are relatively prime. 

Suppose 𝑑 > 1 is divisor of 𝐺𝑚  and 𝐺𝑚−1 . 

But we know that , 𝐺𝑚−1𝐺𝑚+1 − 𝐺𝑚
2 = (−1)𝑚𝑏𝑚−1 

∴ 𝑑 > 1 is also a divisor of 𝑏𝑚−1. 

Thus, 𝑑 > 1 is divisor of 𝐺𝑚  and b, but 𝑔𝑐𝑑 𝐺𝑚 , 𝑏 = 1  

∴ 𝑑 > 1 is not a divisor of 𝐺𝑚  and 𝐺𝑚−1 . 

∴ 𝑔𝑐𝑑 𝐺𝑚 , 𝐺𝑚−1 = 1  

Thus, 𝑔𝑐𝑑 𝐺𝑚 , 𝑏 = 1 and 𝑔𝑐𝑑 𝐺𝑚 , 𝐺𝑚−1 = 1 

So, 𝑔𝑐𝑑 𝐺𝑚 , 𝑏𝐺𝑚−1 = 1 

∴ 𝐺𝑚 and 𝑏𝐺𝑚−1are relatively prime. 
  

CONCLUSION 

In this paper, we describe comparable identities of Generalized Fibonacci sequence. we have also 
developed connection formulas for Generalized Fibonacci sequence and Lucas sequence. It is easy to find 

out new identities simply by varying the pattern of known identities and using inductive logic to guess 

new results. 
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