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ABSTRACT 

In this paper an elastodynamic problem of two collinear Griffith crack in an infinite orthotropic strip of 
finite thickness with stress free boundary is considered. An integral transform technique is employed to 

solve the problem. The asymptotic expressions for the stresses are derived. Approximate analytical 

expressions for dynamic stress intensity factors are obtained by retaining terms up to the order of 4h  for 

large h . Graphical plots of numerical results for different orthotropic materials are also presented. 

 

Keywords: Griffith Crack, Orthotropic Elastic Medium, Local Stress Field and Stress Intensity Factor 
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INTRODUCTION 

Orthotropic materials such as composites are widely used in different branches of engineering. Since the 
ratio of strength to weight of such materials in many cases is higher than other conventional engineering 

materials, applications of the orthotropic materials have been widely expanded. There has been increasing 

interest in analytical solutions of elastodynamic crack problems in an anisotropic medium, particularly in 

an orthotropic medium, due to their importance and usefulness from the technological point of view. 
Atkinson (1965) considered the problem of steady-state propagation of a semi-infinite crack in an 

aelotropic material using the Cauchy-integral formula. Crack propagation problems in orthotropic elastic 

media have been considered by Kassir and Tse(1983), Danyluk and Singh (1984), Arcisz and Sih (1984), 
Piva(1986), Piva and Viola (1988) and many others. The analysis of the work done by Kassir and Tse 

(1983) has been extended by De and Patra (1992) to an orthotropic strip of finite thickness through an 

integral transform technique. Ang (1988) obtained the dynamic stress intensity factor around a crack in an 
anisotropic layer sandwiched between two anisotropic half-planes. Itou (1989) solved the dynamic 

problem of two coplanar Griffith cracks in an orthotropic layer sandwiched between two elastic half-

planes by reducing the problem to a pair of dual integral equations. De and Patra (1993) have solved the 

elastodynamic problems of i) two equal collinear Griffith cracks, ii) an infinite row of parallel cracks and 
iii) a ‘grid’ of cracks of equal arms, propagating with constant speed in a stressed orthotropic medium 

through a complex variable approach. In recent years, some significant work have been done by several 

authors viz. Rizk (2006) investigated the analysis of the elastic homogeneous orthotropic semi-infinite 
plate with an internal crack and edge crack perpendicular to the boundary under thermal shock. Nobile 

and Carloni (2005) analytically investigated fracture behavior of composite materials, Matbuly (2006) 

obtained analytical solution for an interfacial crack subjected to dynamic anti-plane shear loading. Piva, 

Viola and Tornabene (2005) studied crack propagation in an orthotropic medium with coupled 
elastodynamic properties. 

In the present work, the distribution of stress due to the steady-state propagation of two equal collinear 

Griffith crack in an infinite orthotropic strip of finite thickness 2h with stress free boundary is presented. 

It is assumed that cracks are propagating with constant speed c and without change in length along the 

positive x axis. An integral transform technique is used so that the problem has been reduced to the 

solution of a set of triple integral equations. These triple integral equations are reduced to a Fredholm 

integral equation of the second kind using finite Hilbert technique, which is finally solved by an iterative 
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procedure. Approximate analytical expressions for dynamic stress intensity factors are derived by 

retaining terms up to the order of 4h , for large h . Numerical calculations are carried out for Magnesium 

and Beryllium and corresponding graphical plots are presented. 

 

The Elastodynamic Problem 

We consider a problem of two collinear Griffith cracks of finite length in an infinite orthotropic strip with 

stress free boundary. The cracks, defined by the relation 𝑎 ≤  𝑋 ≤ 1, 𝑌 = ±0 are propagating with 
constant speed c, without change in length along the positive x axis, where the coordinate axes x,y,z 

coincide with the axes of elastic symmetry of the material. 

 

 
Figure 1: Two collinear Griffith cracks propagating with constant speed c along the x axis 

 

Since the problem is considered in absence of body force, the equations restricted to motion in the 𝑥𝑦-

plane are given below 

 

𝐶11

𝜕2𝑈

𝜕𝑋2
+ 𝜇12

𝜕2𝑈

𝜕𝑌2
+  𝐶12 + 𝜇12 

𝜕2𝑉

𝜕𝑋𝜕𝑌
= 𝜌

𝜕2𝑈

𝜕𝑡2
                                                                                         (2.1) 

   

𝐶22

𝜕2𝑉

𝜕𝑌2
+ 𝜇12

𝜕2𝑉

𝜕𝑋2
+  𝐶12 + 𝜇12 

𝜕2𝑈

𝜕𝑋𝜕𝑌
= 𝜌

𝜕2𝑉

𝜕𝑡2
                                                                                          (2.2) 

 

where 𝑈 = 𝑈 𝑋, 𝑌, 𝑡 , 𝑉 = 𝑉 𝑋, 𝑌, 𝑡  are displacement components in 𝑋 and 𝑌 directions, t is time, 𝜌 is 

the density of the material and 𝜇12 , 𝐶𝑖𝑗  are elastic coefficients. 

Applying Galilean transformation 𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑡 = 𝑡, and assuming 𝑈 = 𝑢 𝑥, 𝑦 , 𝑉 = 𝑣 𝑥, 𝑦 , 

the system of equation (2.1) and (2.2) reduce to  

 

𝜕2𝑢

𝜕𝑥2
+ 2𝑛

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝑚

𝜕2𝑢

𝜕𝑦2
= 0,                                                                                                                              (2.3)  

 
𝜕2𝑣

𝜕𝑥2 + 2𝑛1
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑚1

𝜕2𝑣

𝜕𝑦2 = 0.                                                                                                                               (2.4)        

where 

2𝑛 =
𝐶12 + 𝜇12

𝐶11 1 −𝑀1
2 

, 2𝑛1 =
𝐶12 + 𝜇12

𝜇12 1 −𝑀2
2 

,                                                                                                          (2.5) 
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𝑚 =
𝜇12

𝐶11 1 −𝑀1
2 

,𝑚1 =
𝐶22

𝜇12 1 − 𝑀2
2 

,                                                                                                             (2.6) 

in which 𝑀𝑗 =
𝑐

𝑣𝑗
 𝑗 = 1,2  and 𝑣1 =  

𝐶11

𝜌
 

1

2
, 𝑣2 =  

𝜇12

𝜌
 

1

2
 are assumed to be less than 1 (subsonic 

propagation). 

As the problem under consideration is symmetrical with respect to the 𝑥-axis, it is sufficient to consider 

the half-strip 0 ≤ 𝑦 ≤ ℎ. 

The Boundary conditions of the problem are given by  
 

𝜍𝑦 𝑥, 0 = 𝑝0𝑓 𝑥 , 𝑎 <  𝑥 < 1                                                                                                                         (2.7𝑎)  

𝑣 𝑥, 0 =  0, 0 <  𝑥 < 𝑎,  𝑥 > 1                                                                                                                     (2.7𝑏)  
𝜏𝑥𝑦  𝑥, 0 = 0,−∞ < 𝑥 < ∞                                                                                                                                (2.7𝑐)  
 

where 𝑓 𝑥  is a prescribed function. 

 

As the boundary 𝑦 = ℎ is assumed to be stress free, we have 
 

𝜏𝑥𝑦  𝑥, ℎ = 0,−∞ < 𝑥 < ∞                                                                                                                              (2.7𝑑) 

σ𝑦 𝑥, ℎ = 0,−∞ < 𝑥 < ∞                                                                                                                                (2.7𝑒) 

 

where 𝑥, 𝑦 are moving axis attached with the crack. 

Solution of the Problem 

An integral solution of equations (2.3) and (2.4) can be written as  
 

𝑢 𝑥, 𝑦 =  𝐴 𝑠, 𝑦 𝑠𝑖𝑛 𝑠𝑥 
∞

0
𝑑𝑠, 

𝑣 𝑥, 𝑦 =  𝐵 𝑠, 𝑦 𝑐𝑜𝑠 𝑠𝑥 

∞

0

𝑑𝑠,                                                                                                                          (3.1) 

 

where A and B are arbitrary functions. Substituting (3.1) into equations (2.3) and (2.4), the following 
differential equations are obtained, 

 

−μ
12

∂2A

∂y2
+  C12 + μ

12
 s
∂B

∂y
+  C11 − c2ρ s2A = 0,                                                                                    (3.2) 

−C22

∂2B

∂y2
−  C12 + μ

12
 s
∂A

∂y
+  μ

12
− c2ρ s2B = 0.                                                                                    (3.3) 

 

Solution of (3.2) and (3.3) are given by  

 

A s, y = A1 s ch γ
1

sy + A2 s ch γ
2

sy + C1 s sh γ
1

sy + C2 s sh γ
2

sy ,                                     (3.4) 

B s, y = B1 s sh γ
1

sy + B2 s sh γ
2

sy + D1 s ch γ
1

sy + D2 s ch γ
2

sy ,                                     (3.5) 

where 𝐴𝑗  𝑠 , 𝐶𝑗  𝑠   𝑗 = 1,2 e are arbitrary functions and 𝐵𝑗  𝑠 , 𝐷𝑗  𝑠  are related to 𝐴𝑗  𝑠 , 𝐶𝑗  𝑠  by 

 

 
𝐵𝑗  𝑠 = −

𝛼𝑗

𝛾𝑗
𝐴𝑗  𝑠 ,  𝑗 = 1,2 

𝐷𝑗  𝑠 = −
𝛼𝑗

𝛾𝑗
𝐶𝑗  𝑠 ,  𝑗 = 1,2 

 
 

 

.                                                                                                                          (3.6)  



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2014 Vol. 4 (2) April-June, pp. 93-102/Bhattacharjee and Roy 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  96 

 

with  

𝛼𝑗 =
𝐶12 + 2𝜇12 − 𝑐2𝜌 − 𝛾𝑗

2𝜇12

𝐶12 + 𝜇12
                                                                                                                         3.7   

 

where 𝛾1
2  and 𝛾2

2  are positive roots of the equation  

  

𝜇12 𝐶12 + 2𝜇12 𝛾
4 +   𝐶12 + 𝜇12 

2 −  𝐶12+2𝜇12  𝐶12 + 2𝜇12 − 𝑐2𝜌 − 𝜇12 𝜇12 − 𝑐2𝜌  𝛾2+ 

 𝐶12 + 2𝜇12 − 𝑐2𝜌  𝜇12 − 𝑐2𝜌 = 0.                                                                                                                 (3.8) 

 

From boundary condition (2.7c) we have, 

 

𝐶2 𝑠 = −
𝛽1𝛾2

𝛽2𝛾1
𝐶1 𝑠                                                                                                                                            (3.9𝑎) 

 

where 

𝛽𝑗  𝑠 = 𝛼𝑗+𝛾𝑗
2   𝑗 = 1,2 .                                                                                                                                     (3.9𝑏) 

Boundary conditions (2.7d) and (2.7c) in conjunction with (3.9) yield 

 𝐴1 𝑠 = 𝛿1 𝑠ℎ 𝑐1 𝑠 

𝐴2 𝑠 = 𝛿2 𝑠ℎ 𝑐2 𝑠 
                                                                                                                                           (3.10)  

where 
𝛿1 𝑠ℎ 

=
 𝐶12 −𝛼2𝐶22  

𝛾1
2 + 𝛼1

𝛾1
 𝑐ℎ 𝛾2𝑠ℎ 𝑐ℎ 𝛾1𝑠ℎ −  𝐶12 −𝛼1𝐶22  

𝛾2
2 +𝛼2

𝛾2
 𝑠ℎ 𝛾1𝑠ℎ 𝑠ℎ 𝛾2𝑠ℎ − 𝛽1

 𝛾2
2 + 𝛼2 
𝛽2𝛾1

 𝐶12 − 𝛼2𝐶22 

 𝐶12 − 𝛼1𝐶22  
𝛾2

2 + 𝛼2

𝛾2
 𝑐ℎ 𝛾1𝑠ℎ 𝑠ℎ 𝛾2𝑠ℎ −  𝐶12 −𝛼2𝐶22  

𝛾1
2 +𝛼1

𝛾2
 𝑐ℎ 𝛾2𝑠ℎ 𝑠ℎ 𝛾1𝑠ℎ 

, (3.11)  

 

𝛿2 𝑠ℎ =

𝛽1𝛾2
𝛽2𝛾1

 𝐶12−𝛼2𝐶22  
𝛾1

2+𝛼1
𝛾1

 𝑠ℎ 𝛾1𝑠ℎ 𝑠ℎ 𝛾2𝑠ℎ −
𝛽1𝛾2
𝛽2𝛾1

 𝐶12−𝛼1𝐶22  
𝛾2

2+𝛼2
𝛾2

 𝑐ℎ 𝛾1𝑠ℎ 𝑐ℎ 𝛾2𝑠ℎ + 𝐶12−𝛼1𝐶22  
𝛾1

2+𝛼1
𝛾1

 

 𝐶12−𝛼1𝐶22  
𝛾2

2+𝛼2
𝛾2

 𝑐ℎ 𝛾1𝑠ℎ 𝑠ℎ 𝛾2𝑠ℎ − 𝐶12−𝛼2𝐶22  
𝛾1

2+𝛼1
𝛾2

 𝑐ℎ 𝛾2𝑠ℎ 𝑠ℎ 𝛾1𝑠ℎ 
.     (3.12) 

 

Again the boundary conditions (2.7a) and (2.7b), together with the relation (3.9) yield the following triple 

integral equations for 𝑐1 𝑠  

 𝑠𝑐1 𝑠 
∞

0
 1 + 𝑀 𝑠ℎ  𝑐𝑜𝑠 𝑠𝑥 𝑑𝑠 =

−𝑝0𝑓 𝑥 

𝐷
, 𝑎 < 𝑥 < 1                                                                           (3.13)  

 𝑐1 𝑠 
∞

0
𝑐𝑜𝑠 𝑠𝑥 𝑑𝑠 = 0,0 ≤ 𝑥 < 𝑎, 𝑥 > 1                                                                                                    (3.14)   

where 𝐷 is a constant given by  

𝐷 = 𝐶12 − 𝛼1𝐶22 −
𝛾2𝛽1

𝛾1𝛽2

 𝐶12 − 𝛼2𝐶22 .                                                                                                      (3.15) 

Here, we note that   0M sh  as h . 

Assuming 𝑐1 𝑠 =
1

𝑠
 ℎ 𝑡2 𝑠𝑖𝑛 𝑠𝑡 𝑑𝑡

1

𝑎
,                                                                                                       (3.16)  

we found that the equation (3.16) is identically satisfied only if  

  ℎ 𝑥2 𝑑𝑥 = 0                                                                                                                                                (3.17)
1

𝑎
  

and equation (3.13) leads to the following Fredhlom integral equation 

ℎ 𝑥2 +  ℎ 𝑡2 𝑘 𝑥2 , 𝑡 𝑑𝑡 = 𝐹 𝑥2 , 𝑎 < 𝑥 < 1
1

𝑎
                                                                                     (3.18𝑎)  

where, 𝑘 𝑥2 , 𝑡 = −
4

𝜋2
 
𝑥2−𝑎2

1−𝑥2   
1−𝑦2

𝑦2−𝑎2 ×
𝑦

𝑦2−𝑥2 𝑘1 𝑦, 𝑡 𝑑𝑦                                                                (3.18𝑏)
1

𝑎
  

with 𝑘1 𝑦, 𝑡 =  𝑀 𝑠ℎ 𝑐𝑜𝑠 𝑠𝑦 𝑠𝑖𝑛 𝑠𝑡 𝑑𝑠
∞

0
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and 𝐹 𝑥2 =
4𝑝0𝑓 𝑥 

𝜋2𝐷
 
𝑥2−𝑎2

1−𝑥2   
1−𝑦2

𝑦2−𝑎2 ×
𝑦𝑑𝑦

𝑦2−𝑥2 +
𝑘 ′′

  𝑥2−𝑎2  1−𝑥2 

1

𝑎
                                                    (3.18𝑐)  

with 𝑘′′ being an arbitrary constant determine by using conditions (3.17). 

Now if we take ℎ ≫ 1 and set 𝜉 = 𝑠ℎ, then equation (3.18b) leads to  

𝑘 𝑥2 , 𝑡 =
2

𝜋
 
𝑥2−𝑎2

1−𝑥2   𝐼0𝑡ℎ
−2 + 𝐼1𝑡ℎ

−4  𝑡2 + 3𝑥2 −
3

2
𝑘2  + 𝑂 ℎ−6                                            (3.19𝑎) 

where
 

𝐼𝑗 =
 −1 𝑗

 2𝑗 + 1 !
 𝜉2𝑗 +1𝑀 𝜉 𝑑𝜉,  𝑗 = 0,1 

∞

0

 

and 𝑘2 = 1 − 𝑎2.                                                                                                                                           (3.19𝑏)  

Integrating (3.18a) with respect to 𝑥 from 𝑎 to 1, 

we have 

 ℎ 𝑥2 
1

𝑎

𝑑𝑥 +    ℎ 𝑡2 𝑘 𝑥2 , 𝑡 𝑑𝑡
1

𝑎

 𝑑𝑥

1

𝑎

 

=   
4𝑝0𝑓 𝑥 

𝜋2𝐷
 
𝑥2 − 𝑎2

1 − 𝑥2
  

1 − 𝑦2

𝑦2 − 𝑎2
×

𝑦𝑑𝑦

𝑦2 − 𝑥2
 𝑑𝑥 +  

𝑘′′

  𝑥2 − 𝑎2  1 − 𝑥2 
𝑑𝑥

1

𝑎

 
1

𝑎

.                (3.19𝑐) 

Particular case: Taking 𝑓 𝑥 = 1 and utilizing condition (3.17) and (3.19a), the above equation becomes 

𝑘′′ =
2𝑝0

𝜋𝐷
 
𝐸

𝐹
− 𝑎2 +

1

𝐹
 ℎ 𝑡2 

1

𝑎

𝑘 𝑡 𝑑𝑡 

where 

𝑘 𝑡 =
2

𝜋
 
𝐼0𝑡

ℎ2
 𝐸 − 𝑎2𝐹 +

𝐼1𝑡

ℎ4
  𝑡2 −

3

2
𝑘2  𝐸 − 𝑎2𝐹 − 𝑎2 𝐸 + 𝐹 + 2𝐸    

𝐼0𝑡

ℎ2
  

  +
𝐼1𝑡

ℎ4
 𝑡2 + 3𝑥2 −

3

2
𝑘2  + 𝑂 ℎ−6 ,                                                                                                     (3.20𝑎) 

 E and F are known as elliptic integrals of 1st and 2nd kind respectively. 

Now, we consider the problem of propagation of two collinear Griffith Cracks in an orthotropic strip of 

sufficiently large thickness 𝑖. 𝑒. , ℎ ≫ 1 , then for large ℎ, the integral equation (3.20a) reduces to the 

form 

ℎ 𝑥2 +  ℎ 𝑡2 𝐿 𝑥2 , 𝑡 𝑑𝑡 = 𝑆 𝑥2 , 𝑎 < 𝑥 < 1
1

𝑎
                                                                                    (3.21𝑎)  

where  

𝐿 𝑥2 , 𝑡 =
2𝑡

𝜋  𝑥2 − 𝑎2  1 − 𝑥2 
 
𝐼0
ℎ2

 𝑥2 −
𝐸

𝐹
 

+
𝐼1
ℎ4

  𝑡2 −
3

2
𝑘2  𝑥2 −

𝐸

𝐹
 + 3𝑥2 𝑥2 − 𝑎2 +

𝐸𝑎2

𝐹
+ 𝑎2 −

2𝐸

𝐹
   + 𝑂 ℎ−6      (3.21𝑏) 

 and 

𝑆 𝑥2 =
2𝑝0  

𝐸
𝐹 − 𝑥2 

𝜋𝐷  𝑥2 − 𝑎2  1 − 𝑥2 
.                                                                                                                  (3.21𝑐) 

 

As ℎ ≫ 1 and  𝐿 𝑥2 , 𝑡  < 1 the solution of integral equation (3.21a) is given by  
 

ℎ 𝑥2 = ℎ0 𝑥
2 +

1

ℎ2 ℎ1 𝑥
2 +

1

ℎ4 ℎ2 𝑥
2 +  𝑂 ℎ−6                                                                                 (3.22)  
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where  

ℎ0 𝑥
2 =

−2𝑝0  𝑥
2 −

𝐸
𝐹
 

𝜋𝐷  𝑥2 − 𝑎2  1 − 𝑥2 
,                                                                                                               (3.23𝑎) 

ℎ1 𝑥
2 =

𝑝0𝐼0𝐶0  𝑥
2 −

𝐸
𝐹
 

𝜋𝐷  𝑥2 − 𝑎2  1 − 𝑥2 
,                                                                                                                (3.23𝑏) 

ℎ2 𝑥
2 =

−𝑝0𝐶0

2𝜋𝐷  𝑥2 − 𝑎2  1 − 𝑥2 
 𝐼0

2  𝑥2 −
𝐸

𝐹
 𝐶0 − 2𝐼1 3𝑥

4 + 𝐶1𝑥
2 + 𝐶2  ,                               (3.23𝑐) 

with 

 𝐶0 = 1 + 𝑎2 − 2
𝐸

𝐹
, 𝐶1 =

𝑘4

4𝐶0
−  1 + 𝑎2 , 𝐶2 = 𝑎2 +

𝐸

𝐹
 𝐶1 −

𝑘4

4𝐶0
 .                                                       (3.23𝑑) 

Again for large value of h, asymptotic expansion of 𝛿1 𝑠ℎ  and 𝛿2 𝑠ℎ  are given by 

𝛿1 𝑠ℎ ~ − 1 + 𝜈1𝑒
− 𝛾1+𝛾2 𝑠ℎ  

𝛿2 𝑠ℎ ~𝜈2 − 𝜈3𝑒
−𝛾2𝑠ℎ                                                                                                                                        (3.24𝑎) 

where 

𝜈1 =
4𝛽1𝛼1𝛾1

𝛽2 𝛼1𝛾2 − 𝛼2𝛾1 
, 𝜈2 =

𝛽1𝛾2

𝛽2𝛾1
, 𝜈3 =

2𝛽1𝛾2 𝛼1𝛾2 + 𝛼2𝛾1 

𝛽2𝛾1 𝛼1𝛾2 − 𝛼2𝛾1 
.                                                            (3.24𝑏)  

Using the above asymptotic expansion of 𝛿1 𝑠ℎ  and𝛿2 𝑠ℎ , the stresses at any point of the solid are 
given by  

𝜍𝑥 =  𝐶11 − 𝛼1𝐶12  𝐽1 + 𝜈1𝐽1
 1  +  𝛼2𝐶12 − 𝐶11  𝜈2𝐽2 + 𝜈3𝐽2

 1  , 

𝜍𝑦 =  𝐶12 − 𝛼1𝐶22  𝐽1 + 𝜈1𝐽1
 1  +  𝛼2𝐶22 − 𝐶12  𝜈2𝐽2 + 𝜈3𝐽2

 1  , 

𝜏𝑥𝑦 = 𝜇12  
𝛽1

𝛾1
 𝐽1

 2 
− 𝐽2

 2 
+ 𝜈1𝐽1

 3  −
𝜈3𝛽2

𝛾2
𝐽2
 3  , 

where 

𝐽𝑖 = −
1

2
 ℎ 𝑡2 

1

𝑎
 

𝑡+𝑥

𝛾𝑖
2𝑦2+ 𝑡+𝑥 2 +

𝑡−𝑥

𝛾𝑖
2𝑦2+ 𝑡−𝑥 2

 𝑑𝑡  𝑖 = 1,2 , 

𝐽𝑖
 1 =

1

4
 ℎ 𝑡2 

1

𝑎

 
𝑡 + 𝑥

  𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦 
2 +  𝑡 + 𝑥 2

+
𝑡 + 𝑥

  𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦 
2 +  𝑡 + 𝑥 2

+
𝑡 − 𝑥

  𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦 2 +  𝑡 − 𝑥 2
+

𝑡 − 𝑥

  𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦 2 +  𝑡 − 𝑥 2 𝑑𝑡  𝑖 = 1,2 , 

𝐽𝑖
 2 =

1

2
 ℎ 𝑡2 

1

𝑎

 
𝑡 + 𝑥

𝛾𝑖
2𝑦2 +  𝑡 + 𝑥 2

+
𝑡 − 𝑥

𝛾𝑖
2𝑦2 +  𝑡 − 𝑥 2

 𝑑𝑡  𝑖 = 1,2 , 

𝐽𝑖
 3 =

1

4
 ℎ 𝑡2 

1

𝑎

 
 𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦

  𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦 2 +  𝑡 + 𝑥 2
−

 𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦

  𝛾𝑖 + 𝛾2 ℎ − 𝛾𝑖𝑦 2 +  𝑡 − 𝑥 2

+
 𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦

  𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦 2 +  𝑡 − 𝑥 2
−

 𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦

  𝛾𝑖 + 𝛾2 ℎ + 𝛾𝑖𝑦 2 +  𝑡 + 𝑥 2
 𝑑𝑡  𝑖 = 1,2 . 

Stress Intensity Factor: 

The stress intensity factor at the outer tip 𝑥 = 1 of the crack is given by  

𝐾0 = lim
𝑥→1+

 2 𝑥 − 1  1 2 𝜍𝑦 𝑥, 0  

 =
𝑝0

 1−𝑎2
  

𝐸

𝐹
− 1  1 −

𝐼0𝐶0

2ℎ2 +
𝐼0

2𝐶0
2

4ℎ4
 +

𝐼1𝐶0

2ℎ4
 3 + 𝐶1 + 𝐶2  + 𝑂 ℎ−6 . 

The stress intensity factor at the inner tip 𝑥 = 𝑎 of the crack is given by  
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𝐾1 = lim
𝑥→𝑎−

 2 𝑎 − 𝑥  1 2 𝜍𝑦 𝑥, 0  

 =
𝑝0

  𝑎 𝑎−1  
  𝑎2 −

𝐸

𝐹
  1 −

𝐼0𝐶0

2ℎ2 +
𝐼0

2𝐶0
2

4ℎ4
 −

𝐼1𝐶0

2ℎ4
 3𝑎4 + 𝐶1𝑎

2 + 𝐶2  + 𝑂 ℎ−6 . 

 

RESULTS AND DISCUSSION 

As a particular case of the problem, numerical results have been carried out for two orthotropic materials 

viz. Beryllium and Magnesium. The values of elastic constant of the materials have been taken from the 
Mukherjee and Das (2007), Das (2002) and Garg (1981), which is given as follows: 

 

 

Materials 
C11 C22 C12 C66 

10
4
mpa 10

4
mpa 10

4
mpa 10

4
mpa 

Beryllium 3.148 3.649 0.888 1.124 

Magnesium 0.575 0.601 0.195 0.167 

 

The stress intensity factors at the crack tips 𝐾0  and 𝐾1 have been plotted against the different values of 

crack speed. Keeping the value of a fixed (a = 0.5), stress intensity factors at the inner and outer tip of the 

crack have been plotted against crack speed for different thickness of the strip i.e. h = 50, 70, 100. Figure 

2 and 3 shows the plots of variation of 𝐾0  and 𝐾1 with crack speed for Beryllium. Figure 4 and 5 shows 

the same plots for Magnesium. 

It is observed from Figure [2-5] that nature of curves for inner and outer tip of the crack is similar with a 

small linear shifting. 

From Figure 2 and 4, it is observed that curve of variation of stress intensity factor 𝐾0  at the outer tip x = 

1 with crack speed decrease with decrease in h. 

 

 
Figure 2: Variation of 𝑲𝟎 with crack speed for Beryllium 
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Figure 3: Variation of 𝑲𝟏 with crack speed for Beryllium 

 

 
Figure 4: Variation of 𝑲𝟎 with crack speed for Magnesium 
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Figure 5: Variation of 𝑲𝟏 with crack speed for Magnesium 

 

Conclusions 

In this work, an elastodynamic problem of two collinear Griffith cracks in an infinite orthotropic strip of 

finite thickness with stress free boundary is considered. Approximate analytical expressions for dynamic 
stress intensity factors are obtained for numerical calculations. 

From Figure 2 and 4, it is observed that curve of variation of stress factor 𝐾0  at the outer tip 𝑥 = 1 with 

crack speed decreases with decrease in h. 
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