Research Article

INNER PRODUCT SPACE

$$A = \{ a_0 + a_1 x_1 + \dots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \text{ and } n \in N \}$$

*Manohar Durge

ANC, Anandwan Warora
*Author for Correspondence

ABSTRACT

This piece of work consist of (A, \bigoplus) is an abelian group, (A, \bigoplus) is a vector space, $A = \{a_0 + a_1x_1 + \dots + a_{n-1}x_{n-1} + a_nx_n / a_i \in F \text{ and } n \in N \}$, is a modified inner product space.

Keywords: Binary Operation, Abelian Group, Vector Space, Inner Product, Field.

INTRODUCTION

Herstein cotes in (1)

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

- 1. a, b \in G implies that $a*b \in G$
- 2. a, b, $c \in G$ implies that (a*b)*c = a*(b*c)
- 3. There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$
- 4. For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every a, $b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set V is said to be vector space over a field F if V is an abelian group under an operation which we denote by +, and if for every $a \in F$, $v \in V$; there is defined an element, written as av, in V subject to

- 1. a(v+w) = av + aw;
- 2. (a + b)v = av + bv;
- 3. a(bv) = (ab)v;
- 4. 1v = v;

For all a, $b \in F$; v, $w \in V$ Where the 1 represent the unit element of F under multiplication.

Definition: The Vector Space V over F is said to be an inner product space if there is defined for any two vectors $x, y \in V$ an element (x, y) in F such that

- 1. (x, y) = (v, x), $\forall x, y \in V$
- 2. $(x,x) \ge 0$ and (x,x) = 0 iff x = 0
- 3. $(c_1x + c_2y, z) = c_1(x, z) + c_2(y, z), \forall c_1, c_2 \in F \& x, y, z \in V$

DISCUSSION

Let
$$A = \{ a_0 + a_1x_1 + \dots + a_{n-1}x_{n-1} + a_nx_n / a_i \in F \text{ and } n \in N \}$$
 and
Let $x = a_0 + a_1x_1 + \dots + a_{n-1}x_{n-1} + a_nx_n, a_i \in F \text{ and } n \in N,$
 $y = b_0 + b_1x_1 + \dots + b_{n-1}x_{n-1} + b_nx_n, b_i \in F \text{ and } n \in N,$
 $z = c_0 + c_1x_1 + \dots + c_{n-1}x_{n-1} + c_nx_n, c_i \in F \text{ and } n \in N,$
 $-x = (-a_0) + (-a_1)x_1 + \dots + (-a_{n-1})x_{n-1} + (-a_n)x_n, a_i \in F \text{ and } n \in N$
 $0 = 0 + 0x_1 + \dots + 0x_{n-1} + 0x_n$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (2) April-June, pp. 90-92/Durge

Research Article

$$1 = 1 + 0x_1 + \dots + 0x_{n-1} + 0x_n$$

$$cx = (ca_0) + (ca_1)x_1 + \dots + (ca_{n-1})x_{n-1} + (ca_n)x_n, c \in F$$

$$x = y \text{ iff } a_i = b_i, \forall i$$

Now we define first binary operation \bigoplus on A as

$$\Rightarrow x \oplus y = y \oplus x, \forall x, y, \in A$$

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z, \forall x, y, z \in A$$

$$0 \oplus x = x \oplus 0, \forall x \in A$$

$$x \oplus (-x) = (-x) \oplus x = 0, \forall x \in A$$

$$(A, \bigoplus)$$
 is an abelian group.(2)

Now we define second binary operation $^{\textcircled{\$}}$ on A as

$$c \circledast x = cx, \forall c \in F \& x \in A \dots (3)$$

$$=>c$$
 \circledast $(x \oplus y) = (c \circledast x) \oplus (c \circledast y), \forall c \in F \& x, y \in A$

$$(c_1 \bigoplus c_2) \circledast x = (c_1 \circledast x) \bigoplus (c_2 \circledast x), \forall c_1, c_2 \in F \& x \in A$$

$$c_1 \circledast (c_2 \circledast x) = (c_1 \circledast c_2) \circledast x, \forall c_1, c_2 \in F \& x \in A$$

$$1^{\textcircled{\$}} x = x, \forall x \in A$$

$$=>(A, \bigoplus, \circledast)$$
 is a vector space.(4)

Now we define inner product on A as $(x,y)=(a_0+a_1+\cdots+a_{n-1}+a_n)\ (b_0+b_1+\cdots+b_{n-1}+b_n)\ \in F$

$$=> (x,y) = \stackrel{(y,x)}{\longrightarrow}, \forall x,y \in A$$
$$(x,x) \ge 0 \text{ and } (x,x) = 0 \text{ iff } x = 0 \text{ or } \sum a_i = 0$$

$$\left(c_{1}x \oplus c_{2}y, z\right) = c_{1}(x, z) + c_{2}(y, z), \forall c_{1}, c_{2} \in F \& x, y, z \in A$$

From (1) to (5) we come to the Conclusion that

$$A = \{ a_0 + a_1 x_1 + \dots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \text{ and } n \in N \}$$
, Is a modified inner product space.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (2) April-June, pp. 90-92/Durge

Research Article

Conclusion

From the above discussion, I come to the following conclusions

$$(A, \bigoplus)$$
 is an abelian group. (A, \bigoplus) is a vector space. $A = \{ a_0 + a_1 x_1 + \dots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \text{ and } n \in N \}$, Is a modified inner product space.

REFERENCES

Herstein IN (1992). Topics In Algebra (Wiley Eastern Limited) 2nd edition 26 – 256. ISBN: 0 85226 354 6.