Research Article

INNER PRODUCT SPACE
$$A = \{a_0 + a_1i + a_2j / a_i \in F\}$$

*Manohar Durge

ANC, Anandwan Warora
*Author for Correspondence

ABSTRACT

This piece of work consist of (A, \bigoplus) is an abelian group. (A, \bigoplus) is a vector space. $(A, \bigoplus) = A = \{a_0 + a_1i + a_2j \mid a_i \in F\}$ is a modified inner product space.

Keywords: Binary Operation, Abelian Group, Vector Space, Inner Product, Field.

INTRODUCTION

Herstein Cotes in (1)

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

- 1. a, b \in G implies that a*b \in G
- 2. a, b, $c \in G$ implies that (a*b)*c = a*(b*c)
- 3. There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$
- 4. For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every a, $b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set V is said to be vector space over a field F if V is an abelian group under an operation which we denote by +, and if for every $a \in F$, $v \in V$; there is defined an element, written as av, in V subject to

- 1. a(v+w) = av + aw;
- 2. (a + b)v = av + bv;
- 3. a(bv) = (ab)v;
- 4. 1v = v;

For all a, $b \in F$; v, $w \in V$ Where the 1 represent the unit element of F under multiplication.

Definition: The Vector Space V over F is said to be an inner product space if there is defined for any two vectors $x, y \in V$ an element (x, y) in F such that

- 1. (x,y) = (v,x), $\forall x,y \in V$
- 2. $(x,x) \ge 0 \text{ and } (x,x) = 0 \text{ iff } x = 0 \forall x \in V$
- 3. $(c_1x + c_2y, z) = c_1(x, z) + c_2(y, z), \forall c_1, c_2 \in F \& x, y, z \in V$

DISCUSSION

Let
$$A = \{a_0 + a_1i + a_2j / a_0, a_1, a_2 \in F(field)\}$$

And $x = a_0 + a_1i + a_2j, a_i \in F;$
 $y = b_0 + b_1i + b_2j, b_i \in F$
 $z = c_0 + c_1i + c_2j, c_i \in F$
 $-x = (-a_0) + (-a_1)i + (-a_2)j, -a_i \in F$
 $0 = 0 + 0i + 0j = zero \ element \ of \ F$
 $1 = 1 + 0i + 0j = multiplicative \ identity \ of \ F$
 $c = c + 0i + 0j, c \in F$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (2) April-June, pp. 87-89/Durge

Research Article

$$cx = (ca_0) + (ca_1)i + (ca_2)j, c \in F$$

 $x = y \text{ iff } a_i = b_i, \forall i$

Now we define first binary operation \bigoplus on A defined as

$$x \bigoplus y = (a_0 + a_1 i + a_2 j) \bigoplus (b_0 + b_1 i + b_2 j)$$

= $(a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j$ (1)

$$=>x \oplus y = y \oplus x, \forall x, y, \in A$$
$$x \oplus \left(y \oplus z\right) = \left(x \oplus y\right) + z, \forall x, y, z \in A$$

$$0 \oplus x = x \oplus 0 = x, \forall x \in A$$

$$x \oplus (-x) = (-x) \oplus x = 0, \forall x \in A$$

= $> (A, \oplus)$ is an abelian group.(2)

Now we define second binary operation $^{\textcircled{\$}}$ on A as

$$c \circledast x = cx, \forall c \in F \& x \in A \dots (3)$$

$$c \circledast (x \oplus y) = (c \circledast x) \oplus (c \circledast y), \forall c \in F \& x, y \in A$$

$$(c_1 \oplus c_2) \circledast x = (c_1 \circledast x) \oplus (c_2 \circledast x), \forall c_1, c_2 \in F \& x \in A$$

$$c_1 \circledast (c_2 \circledast x) = (c_1 \circledast c_2) \circledast x, \forall c_1, c_2 \in F \& x \in A$$

$$1^{\textcircled{\$}} x = x, \forall x \in A$$

$$=>(A, \bigoplus, \circledast)$$
 is a vector space.(4)

Now we define inner product on A as $(x,y) = (a_0 + a_1 + a_2) (b_0 + b_1 + b_2) \in F$

$$=>(x,y)=\overline{(y,x)}$$
, $\forall x,y \in A$

$$(x, x) \ge 0 \text{ and } (x, x) = 0 \text{ iff } x = 0 \text{ or } \sum a_i = 0$$

$$\left(c_{1}x \oplus c_{2}y, z\right) = c_{1}(x, z) + c_{2}(y, z), \forall c_{1}, c_{2} \in F \& x, y, z \in A$$

 $=>A=\{a_0+a_1i+a_2j\ /\ a_i\in F\}$ is a modified inner product space.

Conclusion

From the above discussion, I come to the following conclusions

$$(A, \bigoplus)$$
 is an abelian group.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (2) April-June, pp. 87-89/Durge

Research Article

 $(A, \bigoplus, \textcircled{\$})$ is a vector space.

$$\left(A,\, \bigoplus,\, \bigotimes\right)=A=\{a_0+a_1i+a_2j\ /\ a_i\in F\ \}$$
 is a modified inner product space.

REFERENCES

Herstein IN (1992). *Topics in Algebra* (Wiley Eastern Limited) 2nd edition 26 – 256. ISBN: 0 85226 354 6.