
International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2014 Vol. 4 (2) April-June, pp. 74-86/Mondal and Mukhopadhyay 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  74 

 

TWO TEMPERATURE ELECTRO-MAGNETO THERMO-VISCO-

ELASTIC RESPONSE WITH RHEOLOGICAL PROPERTIES AND 

TEMPERATURE DEPENDENT ELASTIC MODULI 
*
Manoj K. Mondal

1
 and B. Mukhopadhyay

2
 

1 
Department of Mathematics, Seacom Engineering College, Howrah, India 

2
Department of Mathematics, Bengal Engineering and Science University, Howrah, India 

*
Author for Correspondence 

 

ABSTRACT 

The present paper is concerned with a thermo-visco-elastic problem of an isotropic material in cylindrical 
hole with two-temperature due to the presence of a uniform magnetic field. Rheological properties of 

volume and density of material are considered here. The problem is based on the concept of temperature 

dependent mechanical properties. Generalized heat conduction equation due to Lord-Shulman and Green-

Lindsay are utilized. Eigen value approach is used to solve the problem.  
 

Keywords: Thermo-Visco-Elasticity, Rheological Property, Vector-Matrix-Differential Equation, 
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INTRODUCTION 

In classical theory of thermo-elasticity, the heat conduction equation is a parabolic type differential 
equation which predicts that the effect of a thermal disturbance will instantaneously manifest itself at 

infinitely large distance from the source. This prediction is unrealistic from a physical point of view. 

During last four decades, non-classical theories which predict finite speed of thermal signal in elastic 

solids have been developed to remove this drawback. In the theory of thermoelastic diffusion the coupled 
thermoelastic model which is used implies infinite speeds of propagation of thermoelastic waves. Lord 

and Shulman (1967) obtained a wave-type heat equation by constructing a new law of heat conduction to 

replace the classical Fourier’s law which ensure finite speeds of propagation for heat and elastic waves 
which is known as the first generalization of the coupled thermo-elasticity theory. Green and Lindsay 

(1972) incorporate temperature rate term into the constitutive equations of thermo-elasticity and attained 

an explicit version of the constitutive equations. This theory depends on two relaxation times. 
Linear visco-elasticity including thermal stresses and classical thermo-visco-elasticity increase the field 

area of elastic theory to the research workers. Drozdov (1996) derived a constitutive model in thermo-

visco-elasticity which accounts for changes in elastic moduli and relaxation times. Using generalized 

theory proposed by Lord-Shulman and Green-Lindsay, the problem on visco-elastic materials has been 
discussed by Giorgi and Naso (2006). Explanation of electro-magneto-thermo-visco-elastic plane waves 

in rotating media with thermal relaxation was discussed by Choudhuri and Chattapadhyay (2007). The 

thermo-elastic problem with the effect of magnetic field and thermal relaxation under diffusion was 
discussed by Othman et al. (2013). At high temperature the mechanical properties of the material are 

temperature-dependent. Most investigation in thermo-visco-elasticity was done by ignoring the 

temperature-dependent mechanical properties. Thermo-visco-elasticity including the temperature-

dependent mechanical properties increases the field area of elastic theory to the research workers. 
Problem on temperature-dependent mechanical properties was analyzed by Aouadi and El-Karamany 

(2004) in their paper. Ezzat et al., (2010) expend their valuable efforts to recognize the effects of 

modified Ohm’s and Fourier’s laws on generalized magneto-thermo-visco-elasticity with relaxation 
volume properties. Kundu and Mukhopadhyay (2005) investigated a thermo-visco-elastic problem of an 

infinite medium containing a spherical cavity considering the rheological properties of volume, using the 

generalized theory of thermo-elasticity. Mondal and Mukhopadhyay (2013) discussed the effects of 
rheological volume and density properties on their problem having temperature dependent mechanical 

properties. The study of thermo-visco-elasticity with two-temperature is of interest in some branches of 
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material science, metallurgy, applied mathematics etc. Now a day the effect of two-temperature has 

become an important area of research. According to Gurtin and Williams (1967) the second law of 

thermodynamics for continuous bodies may involve with twin temperatures. In the theory of 

thermodynamics the temperature caused by the thermal process is known as conductive temperature 𝜑 

and the temperature due to mechanical process in the material is known as thermodynamic temperature 𝑇. 

The theory of heat conduction depending on the above two temperatures was originated by Chen and 

Gurtin (1968). The propagation of harmonic plane waves in the theory of two-temperature thermo-
elasticity ware investigated by Puri and Jordan (2006). Quintanilla (2004) analyzed the existence, 

structural stability, convergence and spatial behavior for the theory two-temperature thermo-elasticity. By 

means of two-temperature generalized thermo-elasticity Youssef and Al-Harby (2007) explained the 
state-space approach on an infinite body with spherical cavity. Ailawilia et al. (2009) investigated the 

deformation of a rotating generalized thermoelastic medium with two temperatures under the influence of 

gravity subjected to different type of sources. Banik and Kanoria (2011) investigated the effects of two-
temperature on generalized thermo-elasticity for infinite medium with spherical cavity. The analysis of 

effects of two-temperature in the material having temperature dependent mechanical properties on 

generalized thermo-visco-elastic problem was discussed by Mondal and Mukhopadhyay (2013). Shaw 

and Mukhopadhyay (2013) discussed the moving heat source response in micropolar half-space with two-
temperature theory. Ezzat and El-Karamany (2011) established the model of one-dimensional equations 

of the two-temperature generalized magneto-thermo-elasticity theory with two relaxation times. Youssef 

(2010) analyzed the effect of two-temperature in infinite medium under generalized thermoelasticity with 
cylindrical cavity.  

Various problems related to visco-elasticity, done without taking the rheological density property and also 

the mechanical properties which are taken are not temperature dependent. The rheological properties of 

volume as well as density having temperature dependent mechanical properties are being considered here 
for an infinite visco-elastic solid with a cylindrical hole in the context of the theory of generalized two-

temperature magneto-thermo-elasticity. The inverse of Laplace transform for the different expression is 

done numerically using the method adopted by Honig and Hirdes (1984). Solution for stresses, 
displacement and temperature are presented graphically with respect to space and time variables 

separately. 

 

FORMULATION OF PROBLEM AND SOLUTION 

We consider a homogeneous, isotropic, perfectly conducting long hollow visco-elastic cylinder with z-
axis as the axis of the cylinder. We assume that the whole body is situated at a constant applied magnetic 

field 𝑯0 =  0, 0, 𝐻𝑜  acted along z-axis. It produce an induce magnetic field 𝒉 =  0, 0, ℎ  and a perturbed 

electric field  . For perfectly conducting slowly moving visco-elastic medium, the variation of magnetic 

field and electric field are given by Maxwell equations:  

curl 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
 , (1) 

 

curl 𝑬 = −
𝜕𝑩

𝜕𝑡
 , (2) 

 

 𝑫 = 𝜀0𝑬 , (3) 

 

𝑩 = 𝜇1𝑯 , (4) 

 

div 𝑫 = 0 , (5) 

div 𝑩 = 0 (6) 

together with the generalized Ohm’s law  
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𝑱 = 𝜍𝟎  𝑬 + 𝜇𝟏

𝜕𝒖

𝜕𝑡
× 𝑯  (7) 

 

where 𝑯 = 𝒉 + 𝑯0 is magnetic intensity vector, 𝑱 is current density vector. 𝜀0 , 𝜇1 and 𝜍0 are the electric 

permittivity, the magnetic permeability and the electric conductivity respectively. 𝒖 is the displacement 

vector and 𝑩, 𝑫 respectively are the magnetic induction and electric displacement vector. 

The cylindrical polar co-ordinates suppose to be taken as  𝑟, 𝜃, 𝑧 . Due to radial symmetry the 

displacement can be taken as 𝒖 =  𝑢 𝑟, 𝑡 , 0,0  and the temperature be functions of 𝑟 and 𝑡. Therefore the 

strain components take the form as 𝜀𝑟𝑟 =
𝜕𝑢

𝜕𝑟
 , 𝜀𝜃𝜃 =

𝑢

𝑟
 , 𝜀𝑧𝑧 = 0 and dilatation is =

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
 . The basic 

equations for two-temperature electro-magneto-thermo-visco-elastic solid in the context of generalized 

theory, where rheological properties of volume as well as density are considered, may be taken as: 

The equation of motion  

𝜕𝜍𝑟𝑟

𝜕𝑟
+

𝜍𝑟𝑟 − 𝜍𝜃𝜃

𝑟
+  𝑱 × 𝑩 𝑟 = 𝜌

𝜕2𝑢

𝜕𝑡2
 . (8) 

The generalized equation of heat conduction 

𝑘∇2𝜑 = 𝐶𝐸  𝑅3 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕𝑇

𝜕𝜏
+ 𝜏2

𝜕2𝑇

𝜕𝜏2
 𝑑𝜏 + 3𝑇0𝛼𝑇  𝑅2 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕𝑒

𝜕𝜏
+ 𝜏3

𝜕2𝑒

𝜕𝜏2
 𝑑𝜏. (9) 

The constitutive equations 

𝑆𝑖𝑗 =  𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕𝑒𝑖𝑗

𝜕𝜏
𝑑𝜏 , (10) 

𝜍 =  𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒 − 3𝛼𝑇 𝑇 − 𝑇0 + 𝜏1𝑇   𝑑𝜏 . (11) 

Relation between conductive temperature 𝜑 and thermodynamic temperature 𝑇 

 

𝜑 − 𝑇 = 𝑎 ∇2𝜑 (12) 

 

where 𝑎 ≥ 0 is two-temperature parameter (Youssf 2006). 

Here 𝑒𝑖𝑗  , 𝑆𝑖𝑗  are the deviatoric parts of strain tensor and stress tensor respectively; 𝑇0  is the reference 

temperature; 𝑒, 𝑘,  𝐶𝐸  are dilatation, thermal conductivity, specific heat at constant strain respectively; 

𝜌,  𝛼𝑇 are the density and co-efficient of linear thermal expansion at absolute temperature respectively; 

𝜏1, 𝜏2, 𝜏3  are thermal relaxation times; 𝑅1 𝑡 , 𝑅2 𝑡  , 𝑅3 𝑡  are non-negative relaxation function, 

relaxation function characterized by rheological properties of volume and density respectively. ∇2 is 

Laplacian operator.  

Depending upon the values of thermal relaxation times 𝜏1, 𝜏2 , 𝜏3 the above problem can be reduced 

according as bellow. 

 When 𝜏1 = 𝜏2 = 𝜏3 = 0 the above one corresponds the problem with classical theory. 

 When 𝜏1 = 0, 𝜏2 = 𝜏3 ≠ 0 the above one corresponds the problem with generalized Lord-Shulman 
theory. 

 When 𝜏1 ≠ 0, 𝜏2 ≠ 0, 𝜏3 = 0 the above one corresponds the problem with generalized Green-Lindsay 

theory. 

The relaxation functions are taken in the form 
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𝑅1 𝑡 = 2𝜇  1 − 𝑀1  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅2 𝑡 = 𝐾  1 − 𝑀2  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅3 𝑡 = 𝜌  1 − 𝑀3  𝑔 𝑡 𝑑𝑡
𝑡

0

 
 
 
 
 

 
 
 

. (13) 

The function 𝑔 𝑡  generally taken in the form 𝑔 𝑡 = 𝑒−𝛽𝑡  𝑡𝛼−1 (Koltunov 1976) where 
 

 0 < 𝛼 < 1, 𝛽 > 0, 0 ≤ 𝑀2 ≤ 𝑀3 ≤ 𝑀1 < Γ 𝛼 , 0 ≤ 𝑡 < ∞. 

 
Using equations (4), (7) and (10), (11) we have 

 𝑱 × 𝑩 𝑟 = 𝜇1𝐻0
2  

𝜕

𝜕𝑟
 
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
 − 𝜇1

2𝜀0𝐻0
2
𝜕2𝑢

𝜕𝑡2
 , 

 

𝜍𝑖𝑗 =  𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕𝑒𝑖𝑗

𝜕𝜏
 𝑑𝜏 + 𝛿𝑖𝑗  𝑅2 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 𝑒 − 3𝛼𝑇 𝑇 − 𝑇0 + 𝜏1𝑇   𝑑𝜏. (14) 

 

After eliminating 𝑱 with the help of equation (7), we have from equation (1) and (2)  
𝜕ℎ

𝜕𝑟
= −𝜍0  𝐸 − 𝜇1𝐻0

𝜕𝑢

𝜕𝑡
 − 𝜀0

𝜕𝐸

𝜕𝑡
 , (15) 

 
1

𝑟

𝜕

𝜕𝑟
 𝑟𝐸 = −𝜇1

𝜕ℎ

𝜕𝑡
. (16) 

 

In the above we consider the material having temperature dependent mechanical properties which are in 

the form 𝜇 = 𝜇0𝜓0 𝑇  , 𝐾 = 𝐾0𝜓0 𝑇  , 𝜌 = 𝜌0𝜓1 𝑇  , 𝛼𝑇 = 𝛼𝑇
0𝜓2 𝑇  (Lomakin 1976) where 𝜓𝑖 𝑇 =

1 − 𝛼𝑖 𝑇 − 𝑇𝑟  , 𝑖 = 0,1,2 and 𝛼𝑖 > 0, 𝑖 = 0,1 and 𝛼2 < 0 in which 𝜇0 , 𝐾0, 𝜌0 and 𝛼𝑇
0  are the Lame

’ 

constant, bulk modulus, density, Co-efficient of linear thermal expansion at room temperature 𝑇𝑟 .  

 

For more convenient form we use the following non-dimensional variables 

𝑟′ =
𝑟

𝑎1
 ,  𝑢′ =

𝑢

𝑎1
 ,  𝑡′ =

𝑐0

𝑎1
𝑡 ,  𝜏1

′ =
𝑐0

𝑎1
 𝜏1,  𝜏2

′ =
𝑐0

𝑎1
 𝜏2 ,  𝜏3

′ =
𝑐0

𝑎1
 𝜏3,  ℎ′ =

ℎ

𝑎1𝜍0𝐻0𝜇1𝑐0
, 

 

 𝐸 ′ =
𝐸

𝑎1𝜍0𝐻0𝜇1
2𝑐0

2  ,  𝑅1
′ =

2𝑅1

3𝐾0
, 𝑅2

′ =
𝑅2

𝐾0
, 𝑅3

′ =
𝑅3

𝜌0
,  𝑇′ =

𝛾 𝑇 − 𝑇0 

𝜌0𝑐0
2 ,  𝜑′ =

𝛾 𝜑 − 𝑇0 

𝜌0𝑐0
2 ,  

 

 𝜍𝑖𝑗
′ =

𝜍𝑖𝑗

𝐾0
 

where 

 

𝑐0
2 =

𝜆0 + 2𝜇0

𝜌0
, 𝑎1 =

𝑘

𝑐0𝑐𝐸𝜌0
, 𝛾 = 3𝐾0𝛼𝑇

0  

 

Using non-dimensional terms and taking Laplace transform with respect to 𝑡 the equations (8), (9) and 

(12)-(16), dropping the primes, take the following forms as 

𝑝 𝑅 1 + 𝑅 2 + 𝜀1 𝐿 𝑢  − 𝑟2𝑝 𝑚 𝜓2𝑅 2 1 + 𝜏1𝑝  
𝜕𝜑 

𝜕𝑟
−

𝜔

𝑟2
 𝐿  

𝜕𝜑 

𝜕𝑟
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= 𝑟2𝑝2 𝑚 𝜓1 + 𝑐0
2𝜇1𝜀1𝜀0 𝑢  , (17) 

 

𝐿  
𝜕𝜑 

𝜕𝑟
 = 𝑟2𝑎2

𝜕𝜑 

𝜕𝑟
+ 𝑎3𝐿 𝑢   , (18) 

 

𝜑 − 𝑇 = 𝜔 ∇2𝜑  , (19) 

 

 

 𝑅 1 =
𝛽0𝜓0

𝑝
 1 − 𝑀1 

𝜋

𝑝+𝛽
 

𝑅 2 =
𝜓0

𝑝
 1 − 𝑀2 

𝜋

𝑝+𝛽
 

𝑅 3 =
𝜓1

𝑝
 1 − 𝑀3 

𝜋

𝑝+𝛽
 

 
  
 

  
 

 , (20)  

 

𝜍 𝑟𝑟 = 𝑝𝑅 1  
𝜕𝑢 

𝜕𝑟
−

1

2

𝑢 

𝑟
 + 𝑝𝑅 2   

𝜕𝑢 

𝜕𝑟
+

𝑢 

𝑟
 − 𝑚 𝜓2 1 + 𝜏1𝑝 (𝜑 − 𝜔 ∇2𝜑 )  , (21) 

 

𝜍 𝜃𝜃 = 𝑝𝑅 1  
𝑢 

𝑟
−

1

2

𝜕𝑢 

𝜕𝑟
 + 𝑝𝑅 2   

𝜕𝑢 

𝜕𝑟
+

𝑢 

𝑟
 − 𝑚 𝜓2 1 + 𝜏1𝑝 (𝜑 − 𝜔 ∇2𝜑 )  , (22) 

 

𝜍 𝑧𝑧 = −
1

2
𝑝𝑅 1  

𝜕𝑢 

𝜕𝑟
+

𝑢 

𝑟
 + 𝑝𝑅 2   

𝜕𝑢 

𝜕𝑟
+

𝑢 

𝑟
 − 𝑚 𝜓2 1 + 𝜏1𝑝 (𝜑 − 𝜔 ∇2𝜑 )  , (23) 

 

𝜕ℎ 

𝜕𝑟
= 𝑝𝑢 −  𝛿0 + 𝑣2𝑝 𝐸  , (24) 

𝐿 𝐸  = −𝑝 𝑟2
𝜕ℎ 

𝜕𝑟
 . (25) 

 

Where bar denotes the Laplace transform with respect to 𝑡, 𝑝 is the parameter of Laplace transform and  

𝜔 =
𝑎

𝑎1
2 ,  𝛽0 =

4𝜇0

3𝐾0
, 𝑚 =

𝜌0𝑐0
2

𝐾0
, 𝜀 =

𝑇0𝛾
2𝑎1

𝑘𝜌0𝑐0
,  𝜀1 =

𝜇1𝐻0
2

𝐾0
,  𝛿0 = 𝜍0𝜇1𝑐0𝑎1,  𝑣2 = 𝜀0𝜇1𝑐0

2, 

 

𝑎2 =
𝑝2𝑅 3 1 + 𝜏2𝑝 

1 + 𝑝2𝜔𝑅 3 1 + 𝜏2𝑝 
, 𝑎3 =

𝜀 𝜓2𝑝
2𝑅 2 1 + 𝜏3𝑝 

1 + 𝑝2𝜔𝑅 3 1 + 𝜏2𝑝 
, 𝐿 ≡ 𝑟2

𝜕2

𝜕𝑟2
+ 𝑟

𝜕

𝜕𝑟
− 1. 

 

Solving equations (17) and (18) and combining equations (24), (25) we have 

𝐿 𝑢  = 𝑟2𝑎11𝑢 + 𝑟2𝑎12

𝜕𝜑 

𝜕𝑟
 , (26) 

 

𝐿  
𝜕𝜑 

𝜕𝑟
 = 𝑟2𝑎21𝑢 + 𝑟2𝑎22

𝜕𝜑 

𝜕𝑟
 , (27) 

 

𝐿  
𝜕ℎ 

𝜕𝑟
 = 𝑟2𝑎31𝑢 + 𝑟2𝑎32

𝜕𝜑 

𝜕𝑟
+ 𝑟2𝑎33

𝜕ℎ 

𝜕𝑟
 (28) 

where 

𝑎11 =
 𝜓1𝑚 +  𝑣2𝜀1 𝑝

2

𝑞
, 𝑎12 =

𝑅 2𝜓2𝑚 𝑝 1 + 𝜏1𝑝  1 − 𝜔𝑎2 

𝑞
, 𝑎21 = 𝑎3𝑎11 , 
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 𝑎22 = 𝑎2 + 𝑎3𝑎12 , 𝑎31 = 𝑝𝑎11 , 𝑎32 = 𝑝 𝑎12  , 𝑎33 = 𝑝  𝛿0 + 𝑣2𝑝 , 
 

𝑞 = 𝑝  𝑅 1 + 𝑅 2 + 𝜀1 + 𝑚𝜔𝑝𝑅 2𝜓2𝑎3 1 + 𝜏1𝑝 .  
 

Now the equations (26), (27) and (28) in the form of vector-matrix differential equation may be written as  

𝐿 𝑉 = 𝑟2𝔸 𝑉  (29) 

where 

𝑉 =

 
 
 
 
 
𝑢 
𝜕𝜑 

𝜕𝑟
𝜕ℎ 

𝜕𝑟  
 
 
 
 

 ;  𝔸 =  
𝑎11 𝑎12 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

 .  

Solution of equation (29) may be written as  

𝑉 =  𝐴𝑖  𝑋 𝑖 𝜆𝑖
2  𝑤𝑖 𝑟, 𝜆𝑖 

3

𝑖=1

 (30) 

where 𝐴𝑖  are the arbitrary constants, 𝑋 𝑖 𝜆𝑖
2  are the eigenvectors of the matrix 𝔸 corresponding to the 

eigenvalue 𝜆𝑖
2 of the matrix 𝔸 and 𝑤𝑖 𝑟, 𝜆𝑖  satisfies the modified Bessel’s differential equation 

 

𝑟2
𝑑2𝑤

𝑑𝑟2
+ 𝑟

𝑑𝑤

𝑑𝑟
−  𝑟2𝜆2 + 1 𝑤 = 0 . (31) 

 

Solution of equation (31) is 

𝑤𝑖 𝑟, 𝜆𝑖 =
1

𝜆𝑖
2 𝐾1 𝜆𝑖𝑟  (32) 

where 𝐾1 𝜆𝑖𝑟  is the modified Bessel’s function of second kind of order 1 , so that 

 

𝑋 𝑖 𝜆𝑖
2 =

 
 
 
 
 

−𝑎12

 𝑎11 − 𝜆𝑖
2 

𝑎31𝑎12 − 𝑎32 𝑎11 − 𝜆𝑖
2 

 𝑎33 − 𝜆𝑖
2  

 
 
 
 

 ; 𝜆𝑖
2 ≠ 𝑎33  , 𝑖 = 1,2 and 𝑋 3 𝜆3

2 =  
0
0
1
 , for 𝜆3

2 = 𝑎33 . (33) 

 

Therefore from (30) we have 

 

𝑢 = − 𝐴𝑖  

2

𝑖=1

 𝑎12

1

𝜆𝑖
2 𝐾1 𝜆𝑖𝑟  ,  34  

 

𝜑 =  − 𝐴𝑖   𝑎11 − 𝜆𝑖
2 

2

𝑖=1

 
1

𝜆𝑖
3 𝐾0 𝜆𝑖𝑟  , (35) 

 

ℎ = − 𝐴𝑖  
𝑎31𝑎12 − 𝑎32 𝑎11 − 𝜆𝑖

2 

 𝑎33 − 𝜆𝑖
2 

2

𝑖=1

 
1

𝜆𝑖
3 𝐾0 𝜆𝑖𝑟 − 𝐴3

1

𝜆3
3 𝐾0 𝜆3𝑟  (36) 

where 𝐾0 𝜆𝑖𝑟  is the modified Bessel’s function of second kind of order 0. 

Using (34)-(36) we have from equations (19) and (21)-(24)  
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𝑇 =  𝐴𝑖   𝑎11 − 𝜆𝑖
2  

𝜔

𝜆𝑖
−

1

𝜆𝑖
3 𝐾0 𝜆𝑖𝑟 

2

𝑖=1

, (37) 

 

𝜍 𝑟𝑟 =  𝐴𝑖  𝑎12  
𝑝 𝑅 1 + 𝑅 2 

𝜆𝑖
𝐾0 𝜆𝑖𝑟 +

3𝑝𝑅 1

2𝑟𝜆𝑖
2 𝐾1 𝜆𝑖𝑟  

2

𝑖=1

− 𝑄  , (38) 

 

𝜍 𝜃𝜃 =  𝐴𝑖  𝑎12  
𝑝  𝑅 2 −

1
2
𝑅 1 

𝜆𝑖
𝐾0 𝜆𝑖𝑟 −

3𝑝𝑅 1

2𝑟𝜆𝑖
2 𝐾1 𝜆𝑖𝑟  

2

𝑖=1

− 𝑄  , (39) 

 

𝜍 𝑧𝑧 =  𝐴𝑖  𝑎12  
𝑝  𝑅 2 −

1
2 𝑅 1 

𝜆𝑖
𝐾0 𝜆𝑖𝑟  

2

𝑖=1

− 𝑄  , (40) 

 

𝐸 =
−1

  𝛿0 +  𝑣2  𝑝 
  𝐴𝑖  𝑝𝑎12 +

𝑎31𝑎12 − 𝑎32 𝑎11 − 𝜆𝑖
2 

 𝑎33 − 𝜆𝑖
2 

 
1

𝜆𝑖
2 𝐾1 𝜆𝑖𝑟 

2

𝑖=1

+
𝐴3

𝜆3
2 𝐾1 𝜆3𝑟   (41) 

 
where 

𝑄 = 𝑅 2𝜓2𝑚 𝑝 1 + 𝜏1𝑝  𝐴𝑖   𝑎11 − 𝜆𝑖
2 

2

𝑖=1

  
𝜔

𝜆𝑖
−

1

𝜆𝑖
3 𝐾0 𝜆𝑖𝑟  .  

 

In free space, where 𝑱 → 𝟎, if 𝐸0 and ℎ0 represent the component of electric and induced magnetic field 

intensities in the direction of 𝜃 and 𝑧 respectively, they satisfy the following non-dimensional equations 

in transform domain  

 
1

𝑟

𝜕

𝜕𝑟
 𝑟𝐸 0 = −𝑝ℎ 0 , (42) 

 

𝜕ℎ 0

𝜕𝑟
= −𝑣2  𝑝 𝐸 0 . (43) 

 

With the help of solution of (42), the solution of (43) becomes 

 

ℎ 0 = −
1

𝑝2 𝑣
 𝐼0 𝑝𝑣𝑟  (44) 

 

where 𝐼0  is the modified Bessel function of first kind of order 0. 
 

Boundary Conditions 

The transverse components of the electric and induced magnetic field intensities are continuous across the 
surface of the cylinder and hence 

𝐸 𝑟, 𝑡 = 𝐸0 𝑟, 𝑡  ;  ℎ 𝑟, 𝑡 = ℎ0 𝑟, 𝑡  for 𝑡 > 0 at the surface of the hole. (45) 

For mechanical and thermal boundary conditions we consider the following two cases: 

 Case I) 𝜍𝑟𝑟 = 𝐻 𝑡 ,
𝜕𝜑

𝜕𝑟
= 0 at the surface of the hole;  
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 Case II) 𝜍𝑟𝑟 = 𝛿 𝑡 ,
𝜕𝜑

𝜕𝑟
= 0 at the surface of the hole. 

When the boundary conditions are used, a system of three linear equations in 𝐴1, 𝐴2, 𝐴3can be obtained 

from the equations (35), (38) and combination of (36) with (44). Solving these equations, we achieve the 

values of 𝐴𝑖  for two distinct cases. 

 Case I)  

 𝐴1 =
𝑋2

𝑝 𝑌1𝑋2−𝑋1𝑌2 
, 𝐴2 =

−𝑋1

𝑝 𝑌1𝑋2−𝑋1𝑌2 
, 𝐴3 =

𝐼0

𝑣𝑝2𝑍3
−

 𝑍1𝑋2−𝑋1𝑍2 

𝑝𝑍3 𝑌1𝑋2−𝑋1𝑌2 
 

 
Case II) 

𝐴1 =
𝑋2

 𝑌1𝑋2 − 𝑋1𝑌2 
, 𝐴2 =

−𝑋1

 𝑌1𝑋2 − 𝑋1𝑌2 
, 𝐴3 =

𝐼0

𝑣𝑝2𝑍3
−

 𝑍1𝑋2 − 𝑋1𝑍2 

𝑍3 𝑌1𝑋2 − 𝑋1𝑌2 
 

where 

𝑋𝑖 =
𝑁1𝑖  𝐾1𝑖  

𝜆𝑖
2 ,  𝑌𝑖 = 𝑎12  

𝑝𝑅 

𝜆𝑖
𝐾0𝑖 +

3𝑝𝑅 1

2𝜆𝑖
2 𝐾1𝑖 − 𝑁 𝑁1𝑖  

𝜔

𝜆𝑖
−

1

𝜆𝑖
3 𝐾0𝑖  , 

 

𝑍𝑖 =
𝑎31𝑎12 − 𝑎32𝑁1𝑖

𝑁3𝑖

1

𝜆𝑖
3 𝐾0𝑖  ,  𝐾0𝑖 = 𝐾0 𝜆𝑖 ,  𝐾1𝑖 = 𝐾1 𝜆𝑖 , 

 

 𝑁1𝑖 =  𝑎11 − 𝜆𝑖
2 ,  𝑁3𝑖 =  𝑎33 − 𝜆𝑖

2 ;  𝑖 = 1,2  
 

and 𝑍3 =
1

𝜆3
3 𝐾0 𝜆3 , 𝑁 = 𝑅 2𝜓2𝑚 𝑝 1 + 𝜏1𝑝 ,𝑅 =  𝑅 1 + 𝑅 2 ,  𝐼0 =  𝐼0 𝑝𝑣 . 

 

Equations (34)-(41) together with the above derived values of 𝐴1, 𝐴2  and 𝐴3 for distinct cases provide the 

eventual solutions in transform domain. Now for graphical representation it required the numerical 
information’s. 

 

RESULTS AND DISCUSSION 
The expressions for displacement, stress, temperature and the fields can found out numerically with the 

help of above consequent values of 𝐴𝑖 . For infinitesimal temperature deviations from reference 

temperature we can take 𝜓𝑖 𝑇0 = 1 − 𝛼𝑖 𝑇0 − 𝑇𝑟 ; 𝑖 = 0,1,2 such that 𝛼0 > 0, 𝛼1 > 0 & 𝛼2 < 0 
(Nowacki 1959). To study the behavior of the quantities in details and with the intention of demonstrating 

the outcomes obtain in the above we attempt to achieve the numerical values of the different characteristic 

parameters of the material. For execution of the graphical representation we take for granted the 

numerical values for a magnesium crystal-like material as (Ezzat et al., 2010)  

 𝜌0 = 1.74 × 103𝑘𝑔 𝑚3 , 𝐶𝐸 = 1020 𝐽 𝐾 𝑘𝑔, 𝑘 = 156𝑊 𝐾 𝑚, 𝜆0 = 3543 × 107𝑁 𝑚2 , 
 𝜇0 = 1518 × 107𝑁 𝑚2 , 𝜆0 + 2𝜇0 = 6579 × 107𝑁 𝑚2 , 𝛼𝑇

𝑜 = 25.2 × 10−6  1 𝐾 ,  
 𝑇𝑜 = 298𝐾,  𝐾0 = 4555 × 107𝑁 𝑚2 , 𝛾 =  3𝜆0 + 2𝜇0 𝛼𝑇

𝑜 = 3.444 × 105𝑁 𝑚2 𝐾. 
The above considered numerical values imply 𝑚 = 1.4443, 𝜀 = 0.3027 × 10−2, 𝛽0 = 0.444346. For the 

graphical evaluation the other constants in this paper may be taken as 𝛽 = 0.05, 𝛼 =
1

2
,  𝑀1 =

0.106,  𝑀2 = 𝑀3 = 0.08,  𝜓0 = 0.82 ,  𝜓1 = 0.90 ,  𝜓2 = 1.25, 
 𝜀1 = .0005,  𝛿0 = .008, 𝑣 = .373 × 10−5 .  
To get the solution for thermal displacement, temperature, stress and the fields we apply inverse Laplace 

transform numerically using the method based on Honig and Hirdes (1984) to the equations (34)-(41). 

The results of the present investigations are given in form of figures for different values of time, radial 
distance and two-temperature parameter (temperature discrepancy). Moreover we draw the graphs 

considering temperature independent mechanical properties (TIMP) and considering temperature 
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dependent mechanical properties (TDMP) and in addition comparison are also made considering with 

rheological density property (WDP) and considering without rheological density property (WODP). 

In particular cases when we choose, 

 𝑎 = 0 that is 𝜔 = 0 , our considered problem reduced to one, related to unique-temperature. 

 𝑀3 = 0, our considered problem reduced to one, related to null rheological density property. 

 𝑀2 = 0, our considered problem reduced to one, related to null rheological volume property. 

 𝑀3 = 0 and 𝑀2 = 0, our considered problem reduced to one, related to null rheological density 
property as well as null rheological volume property. 

 𝜓0 = 𝜓1 = 𝜓2 = 1, our considered problem reduced to one, related to temperature independent 

mechanical properties. 

 𝜓0 = 𝜓1 = 𝜓2 = 1, 𝜔 = 0, our considered problem reduced to one, related to temperature 

independent mechanical properties and unique-temperature. 

 𝜓0 = 𝜓1 = 𝜓2 = 1, 𝑀3 = 0, our considered problem reduced to one, related to temperature 

independent mechanical properties and null rheological density property. 

 𝜓0 = 𝜓1 = 𝜓2 = 1, 𝑀3 = 0, 𝑀2 = 0, our considered problem reduced to one, related to temperature 

independent mechanical properties and null rheological density property as well as null rheological 

volume property. 

 𝜓0 = 𝜓1 = 𝜓2 = 1, 𝑀3 = 0, 𝑀2 = 0, 𝜔 = 0, our considered problem reduced to one, related to 

temperature independent mechanical properties and null rheological density property as well as null 

rheological volume property with unique-temperature. 

 

 
Figure1: Curves representation  Figure2: Plot thermodynamic temperature vs 

time

 

 
 

Figure 3: Plot conductive temperature vs time Figure 4: Plot conductive temperature vs 

radius 
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Figure 5: Plot displacement vs time Figure 6: Plot displacement vs radius 

 

 
Figure 7: Plot electric field vs time Figure 8: Plot electric field vs radius 

 

 
Figure 9: Plot perturbed magnetic field vs 

time 

Figure 10: Plot perturbed magnetic field vs 

radius 

 

 
Figure 11: Plot stress component vs time Figure 12: Plot stress component vs time 
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Figure 13: Plot stress component vs time 

 

Here the figures represent the variation of thermodynamic temperature, conductive temperature, 
displacement, electric field, perturbed magnetic field and stresses components when continuous radial 

stress is applied on the thermally insulated boundary and all the graphs are shown in view of two 

relaxation times. Figure 1 stands for representation of curves for remaining all graphs. The variations of 
thermodynamic temperature verses time in the presence of rheological density property, as well as 

without it, are plotted in the figure 2 and the assessment is made between TDMP and TIMP. The effect of 

two-temperature parameter is clearly seen from this figure. At a distance from the vertical axis all type of 

curves produce the notable variations. It is observed from this figure that for increasingly fixed values of 

𝑟, the deviation gradually decreases. Figure 3 and figure 4 describe the variations of conductive 

temperature with respect of time variable and radial distance respectively. It is observed from both these 

figures that the conductive temperature takes different values in the presence of density property and two-
temperature parameter and without them. From figure 4 it is found that the curves for TDMP always 

provide lower values than that of the curves for TIMP and steadily converge to zero. Figure 5 depicts the 

variation of displacement versus time 𝑡. For fixed value of 𝑟, a little change in displacement is observed at 

the initial stage and after a certain time-pass it gradually decreases and then converges to a certain value. 
From this figure it is seen that when time increases the curves for TDMP and TIMP converge nearly 

parallel to each other and the nature of the curves just change for WDP and WODP. It is also observed 

that the initial time-pass increases with the increasing value of 𝑟. Figure 6 shows the variation of 

displacement with respect to radial distance. It is found from the figure that for fixed 𝑡 the magnitude of 

displacement decreases with the increasing value of the radial distance and that it approaches zero at a 

distance far from the boundary of the hole. Figures 7-8 represent the distributions of electric field and 

figures 9-10 represent the distributions of perturbed magnetic field when continues radial stress is applied 
at the boundary of the hole. It is seen from both the figures 7 and 9 that as time increase both the fields’ 

decreases and the magnitude of the fields’ are inversely proportional with radial distance. Figures 8 and 

10 show that for fixed values of 𝑡, electric field and perturbed magnetic field increase with the radial 
distance and after the traverse of certain distance the steady state condition arrives and gradually 

converges to zero. Figures 11-13 illustrate the stress distributions with respect to time for WDP and 

WODP as well as taking TDMP and TIMP. After a certain span of time it is found from the figures that 
the stress components expose a sudden increments and then decrease with time. It is noticed that the 

magnitude of the sudden increments decreases with the increasing value of the radial distance. 

Conclusions 

In the presence of uniform magnetic field and in the context of classical theory and generalized theory, 
the governing equations of thermo-visco-elasticity with two-temperature have been investigated with the 

effect of temperature dependent mechanical properties and rheological density property. The leading 

equations have been derived for the cases when continuous radial stress and instantaneous radial stress 
applied on the thermally insulated boundary. Eigen value approach has been used to solve the vector-

matrix-differential equation. We conclude that the magnitude of the displacement for the curve TIMP is 
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lesser then that of the curve for TDMP. In the presence of temperature discrepancy (𝜔 = 0.071) and 

rheological density property the magnitude of the displacement increases. The conductive temperature 

and the thermodynamic temperature exhibit the remarkable changes on behalf of various situations. The 
electric field and perturbed magnetic field take the values with very small disparity for different 

conditions. Stress components provide the similar nature as it was for null temperature discrepancy and 

for void rheological density property. 
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