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ABSTRACT 

A set of m Gaussian integer is called a complex Diophantine m-tuple with the property D(z) if the product 
of its any two distinct elements increased by z is a square of a Gaussian integer. In this paper, we present 

five sets of Gaussian Diophantine quadruples with the property D(4).  
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INTRODUCTION 

A set of positive integers }......,{ 21 maaa  is said to have the property D(n),  }0{Zn , if naa ji   , a 

perfect square for all  mji 1  and such a set is called a Diophantine m-tuples with property D(n). 

Many mathematicians considered the problem of the existence of Diophantine quadruples with the 
property D(n) for any arbitrary integer n [1] and also for any linear polynomials in n. Further, various 

authors considered the connections of the problem of Diophantus, Davenport and Fibonacci numbers in 

(Hoggatt and Bergum, 1977; Horadam, 1987; Jones, 1978; Long and Bergum, 1988; Morgado, 1983-

1984, 1991, 1995; Gupta and Singh, 1985; Beardon and Deshpande, 2002; Brown, 1985; Deshpande, 
2003; Bugeaud et al., 2007; Liqun, 2007; Fujita, 2008; Srividhya, 2009; Gopalan and Pandichelvi, 2011; 

Yasutsugu and Togbe, 2011; Gopalan and Srividhya, 2012; Gopalan and Srividhya, 2012; Gopalan and 

Srividhya, 2012). 
In this paper we consider the analogous problem for Gaussian integer. Let z be any Gaussian integer and 

let 2m  be an integer. A set }0{\)(}......,{ 21 izaaa m   is said to have this property D(z) if the 

product of its any two distinct elements increased by z is a square of a Gaussian integer. If the set 

}......,{ 21 maaa  is a complex Diophantine quadruple then the same is true for the set }......,,{ 21 maaa  . 

Particularly in (Dujella et al., 1997; Vidhyalakshmi et al., 2014), the authors have analyzed the problem 
of the existence of the complex Diophantine quadruples. In this paper, we present five sets of Gaussian 

Diophantine quadruples with the property D(4).  

 

METHOD OF ANALYSIS 

Let  iqpa  1  and  iqpb 939   be two Gaussian integers. 

Observe that  
24 ab  . 

Thus (a, b) is a Gaussian Diophantine double with property D(4). 
Let c  be any non-zero Gaussian integer such that 

21 ac           (1)  

21 bc           (2)   

Case (i): 

Setting   ba ,   and subtracting (1) from (2), we obtain 

qipbac 16162     

Case (ii):   
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Similarly by choosing   ba ,  , we obtain  

qipbac 4442      

We have a well known result that the fourth tuple for the property D(4) is given by  

][
2

1
 abccbad   

Thus, the Gaussian Diophantine quadruples are given by  

Case (i):  

)}4192432144(449696432144

,1616,939,1{

232223 qpqqpqipqppqp

qipqipiqp




  

Case (ii):  

)}82410836(8121210836

,444,939,1{

232223 qpqqpqipqppqp

qipqipiqp




  

For simplicity, a few examples are exhibited below: 

Ex:1 

)112836722916972(2241128183618362916972

,271527,12412,333

232223 qpqqpqipqppqpd

qipcqipbqipa





Ex:2 

)16969636(1648489632

,848,232,212

232223 qpqqpqipqppqpd

qipcqipbqipa




 

Ex:3 

)4124(4124

,44,2,2

2323 qqpqippqpd

qipciqpbiqpa




 

 

CONCLUSION 
In this paper, we have exhibited five Gaussian quadruples with property D(4) starting with linear 

Gaussian polynomials. One may search for Gaussian Diophantine quadruples consisting of polygonal 

numbers and centered polygonal numbers with suitable property. 
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