Research Article

C₂ – RATE SEQUENCE SPACES OF DIFFERENCE SEQUENCE DEFINED BY A MODULUS FUNCTION

Cumali CATAL, İlhan DAĞADUR* and Burcu ÖZALTIN

Mersin University, Faculty of Science and Literature, Department of Mathematics, 33343 Mersin-Turkey *Author for Correspondence

ABSTARCT

Recall that a C_{λ} method is obtained by deleting a set of rows from the Cesáro matrix C_1 . The purpose of this article is to introduce the sequence spaces $C_{\lambda}^0(p,f,s,\pi)$, $C_{\lambda}^c(p,f,s,\pi)$ and $C_{\lambda}^{\infty}(p,f,s,\pi)$ using a modulus function f. Several properties of this spaces, and some inclusion relations have been examined.

Keywords: Modulus Function, Rate Sequence Spaces, Difference Sequence, Paranorm, C_{λ} -Summability Method

AMS Clasification: 40C05, 40D25, 40G05, 42A05, 42A10

INTRODUCTION

The notion of modulus function was introduced by Nakano [12] and further investigated by Ruckle [14], Maddox [9], Tripathy and Chandra [15] and many others. A function $f:[0,\infty)\to[0,\infty)$ is called a modulus if

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

It is immediate from (ii) and (iv) that f is continuous everywhere on $[0, \infty)$. The idea of difference sequence was first introduced by Kizmaz [6] write $\Delta x_k = x_k - x_{k+1}$ for $k = 1, 2, 3, \ldots$ Let ω denote the space of all comlex-valued sequences, $\Delta: \omega \to \omega$ be the difference defined by $\Delta x = (\Delta x_k)_{k=1}^{\infty}$. Let ω denote the space of all real or complex-valued sequence. It can be topologized with the seminorms $p_n(x) = |x_n|$, $(n=1,2,\ldots)$, any vector subspace X of ω is a sequence space. A sequence space X with a vector space topology τ , is a K-space provided that the inclusion map $i:(X,\tau)\to\omega$, i(x)=x, is continuous. If, in addition, τ is complete, metrizable and locally convex then (X,τ) is an FK-space. So an FK-space is a complete, metrizable locally convex topological vector space of sequences for which the coordinate functionals $P_n(x)=x_n$, $(n=1,2,\ldots)$, are continuous. The basic properties of FK-spaces may be found in [3], [16], [17] and [19].

Ruckle [14] used the idea of a modulus function f to construct a class of FK spaces

$$L(f) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty \right\}.$$

Let $\pi = (\pi_n)$ be a sequence of positive numbers i.e, $\pi_n > 0, \forall n \in \mathbb{N}$ and X an FK-space. We shall consider the sets of sequences $x = (x_n)$

$$X_{\pi} = \{ x \in w : \left(\frac{x_n}{\pi_n} \right) \in X \}.$$

The set X_{π} may be considered as FK-space. We shall call them as rate spaces (see, [4] and [5]). Let F be an infinite subset of N and F as the range of a strictly increasing sequence of positive integers, say

Research Article

 $F = \{\lambda(n)\}_{n=1}^{\infty}$. The Cesáro submethod C_{λ} is defined as

$$(C_{\lambda}x)_n = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x_k, (n=1,2,...),$$

where $\{x_k\}$ is a sequence of a real or complex numbers. Therefore, the C_λ -method yields a subsequence of the Cesáro method C_1 , and hence it is regular for any λ . C_λ is obtained by deleting a set of rows from Cesáro matrix. The basic properties of C_λ -method can be found in [1] and [13] We need the following inequality throughout the paper. Let $p=(p_k)$ be a sequence of positive real numbers with $G=\sup_k p_k$ and $D=\max(1,2^{G-1})$. Then, it is well known that for all a_k , $b_k\in C$, the field of complex numbers, for all $k\in \mathbb{N}$,

$$\left|a_k + b_k\right|^{p_k} \le D\left(\left|a_k\right|^{p_k} + \left|b_k\right|^{p_k}\right) \tag{1}$$

Also for any complex μ ,

$$|\mu|^{p_k} \le \max\left(1, |\mu|^G\right) \tag{2}$$

see in [11] Motivating by Maddox [9], Jürimäe [4] and Başarır [2] we make the following definitions: The following sequence spaces

$$\begin{split} C^{\infty}_{\lambda}(\pi) &= \left\{x \in w : \sup_{k} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right] < \infty \right\}, \\ C^{0}_{\lambda}(\pi) &= \left\{x \in w : \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right] \rightarrow 0 \ (k \to \infty) \right\}, \\ C^{c}_{\lambda}(\pi) &= \left\{x \in w : \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right] \rightarrow 0 \ (k \to \infty), \text{ for some } L > 0 \right\}, \\ C^{\infty}_{\lambda}(p,\pi) &= \left\{x \in w : \sup_{k} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} < \infty \right\}, \\ C^{0}_{\lambda}(p,\pi) &= \left\{x \in w : \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} \rightarrow 0 \ (k \to \infty) \right\}, \\ C^{c}_{\lambda}(p,\pi) &= \left\{x \in w : \sup_{k} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} \rightarrow 0 \ (k \to \infty), \text{ for some } L > 0 \right\}, \\ C^{\infty}_{\lambda}(p,s,\pi) &= \left\{x \in w : \sup_{k} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} < \infty, s \ge 0 \right\}, \\ C^{0}_{\lambda}(p,s,\pi) &= \left\{x \in w : k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} \rightarrow 0 \ (k \to \infty), s \ge 0 \right\} \\ \text{and} \\ C^{c}_{\lambda}(p,s,\pi) &= \left\{x \in w : k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left| \Delta \left(\frac{x}{\pi}\right)_{i} \right| \right]^{p_{k}} \rightarrow 0 \ (k \to \infty), s \ge 0, \text{ for some } L > 0 \right\}. \end{split}$$

RESULTS

In this section, C_{λ} - rate sequence spaces of difference sequence is defined by a modulus function, and several theorems on this subject are given.

Definition 1. Let f be a modulus function. Then we define the following sets of sequences

Research Article

$$C_{\lambda}^{\infty}(p,f,s,\pi) = \left\{ x \in w : \sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_{i}\right|\right)\right]^{p_{k}} < \infty, \ s \ge 0 \right\},$$

$$C_{\lambda}^{0}(p,f,s,\pi) = \left\{ x \in w : k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_{i}\right|\right)\right]^{p_{k}} \to 0 \ (k \to \infty), \ s \ge 0 \right\}$$

and

$$C_{\lambda}^{c}(p,f,s,\pi) = \left\{ x \in w : k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_{i} - L \right| \right) \right]^{p_{k}} \to 0 \ (k \to \infty), \quad s \ge 0, \ for some \ L > 0 \right\},$$

where
$$\Delta \left(\frac{x}{\pi}\right)_k = \frac{x_k}{\pi_k} - \frac{x_{k+1}}{\pi_{k+1}}$$
.

Theorem 1.

- (i) For any modulus function f, $C^0_{\lambda}(p,f,s,\pi)$, $C^c_{\lambda}(p,f,s,\pi)$ and $C^{\infty}_{\lambda}(p,f,s,\pi)$ are linear spaces over the complex field C.
- (ii) Let f be any modulus. Then $C^0_{\lambda}(p,f,s,\pi) \subset C^c_{\lambda}(p,f,s,\pi) \subset C^{\infty}_{\lambda}(p,f,s,\pi)$.

Proof. (i) Let $x, y \in C_{\lambda}^{0}(p, f, s, \pi)$. For any $\alpha, \beta \in C$, there exist integers M and N such that $|\alpha| \le M_{\alpha}$ and $|\beta| \le N_{\beta}$. By definition of modulus function and inequality (1) we have

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{\alpha x + \beta y}{\pi} \right)_{i} \right| \right) \right]^{p_{k}}$$

$$\leq k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{\alpha x}{\pi} \right)_{i} \right| \right) + \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{\beta y}{\pi} \right)_{i} \right| \right) \right]^{p_{k}}$$

$$\leq D M_{\alpha}^{G} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_{i} \right| \right) \right]^{p_{k}} + D N_{\beta}^{G} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{y}{\pi} \right)_{i} \right| \right) \right]^{p_{k}}.$$

This implies that $\alpha x + \beta y \in C_{\lambda}^{0}(p, f, s, \pi)$, and completes the proof. The others cases are routine works in view of the above theorem.

(ii) The proof of the inclusion $C_{\lambda}^{0}(p, f, s, \pi) \subset C_{\lambda}^{c}(p, f, s, \pi)$ is routine verification. So, we leave it to the reader. Let $x \in C_{\lambda}^{c}(p, f, s, \pi)$. Then there is some L such that

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k} \to 0 \ (k \to \infty), \ s \ge 0.$$

From inequality (1), we get

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} = k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L + L \right| \right) \right]^{p_k}$$

$$\leq D k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k} + D k^{-s} \left[f \left(\left| L \right| \right) \right]^{p_k}.$$

There exists an integer M such that $|L| \le M$. Therefore we have

Research Article

$$\begin{aligned} k^{-s} & \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \\ & \leq D k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k} + D k^{-s} \left[M f \left(|\mathbf{I}| \right) \right]^G. \end{aligned}$$

This shows that $x \in C_{\lambda}^{\infty}(p, f, s, \pi)$, and completes the proof.

Theorem 2. $C_{\lambda}^{0}(p, f, s, \pi)$, $C_{\lambda}^{c}(p, f, s, \pi)$ and $C_{\lambda}^{\infty}(p, f, s, \pi)$ are linear topological spaces paranormed by

$$g(x) = \sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_{i} \right| \right) \right]^{p_{k}/M},$$

where $M = \max(1, G = \sup_{k} p_k)$.

The proof follows by using standart techniques and the fact that every paranormed space is a topological linear space [18, p.37]. So we omit the details.

Theorem 3. $C_{\lambda}^{0}(p, f, s, \pi)$, $C_{\lambda}^{c}(p, f, s, \pi)$ and $C_{\lambda}^{\infty}(p, f, s, \pi)$ are complete in their paranorm topologies.

Proof. Let $(x^{(j)})$ be a Cauchy sequence in $C^0_{\lambda}(p, f, s, \pi)$, where

$$(x^{(j)}) = (x_1^j, x_2^j, \dots), \forall j \in \mathbb{N}.$$

Hence for a given $\varepsilon > 0$ there exists N that $g(x^{(j)} - x^{(t)}) < \varepsilon$ for all j, t > N, that is

$$\sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} - \Delta \left(\frac{x^{(t)}}{\pi} \right)_{i} \right) \right]^{p_{k}/M} < \varepsilon, \text{ for all } j, t > N.$$
 (3)

This implies that for each fixed i, $\left|\Delta\left(\frac{x^{(j)}}{\pi}\right)_i - \Delta\left(\frac{x^{(i)}}{\pi}\right)_i\right| < \varepsilon$. So $\left(\Delta\left(\frac{x^{(j)}}{\pi}\right)_i\right)$ is a Cauchy sequence in C, but C is complete so for $\forall i \in \mathbb{N}$ we have $\Delta\left(\frac{x^{(j)}}{\pi}\right)_i \to \Delta\left(\frac{x}{\pi}\right)_i \ (j \to \infty)$. From (3) we get

$$\sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} - \Delta \left(\frac{x^{(t)}}{\pi} \right)_{i} \right| \right) \right]^{p_{k}} < \varepsilon^{M}, \text{ for all } j, t > N.$$

So for each fixed k

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\Delta \left(\frac{x^{(j)}}{\pi} \right)_i - \Delta \left(\frac{x^{(t)}}{\pi} \right)_i \right) \right]^{p_k} < \varepsilon^M, \text{ for all } j, t > N.$$

By taking $t \to \infty$ in the above inequality we obtain

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x^{(j)}}{\pi} \right)_i - \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} < \varepsilon^M, \text{ for all } j > N.$$

Since k is arbitrary we have

$$\sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} - \Delta \left(\frac{x}{\pi} \right)_{i} \right| \right) \right]^{p_{k}} < \varepsilon^{M}, \text{ for all } j > N,$$

this implies $g(x^{(j)} - x) < \varepsilon$, for j > N.

Now we have to show that $x \in C^0_{\lambda}(p, f, s, \pi)$. Since $p_k / M \le 1$ and $M \ge 1$, using Minkowski's inequality and definition of modulus function, we can get

Research Article

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x}{\pi} \right)_{i} \right) \right]^{p_{k}/M}$$

$$= k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x}{\pi} \right)_{i} + \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} - \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} \right) \right]^{p_{k}/M}$$

$$\leq k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x}{\pi} \right)_{i} - \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} \right) + \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} \right) \right]^{p_{k}/M}$$

$$\leq k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x}{\pi} \right)_{i} - \Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} \right) \right]^{p_{k}/M}$$

$$+ k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta \left(\frac{x^{(j)}}{\pi} \right)_{i} \right) \right]^{p_{k}/M}.$$

Taking supremum of such k' s we obtain

$$\sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_{i} \right| \right) \right]^{p_{k}/M}$$

$$\leq \sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_{i} - \Delta\left(\frac{x^{(j)}}{\pi}\right)_{i} \right| \right) \right]^{p_{k}/M}$$

$$+ \sup_{k} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x^{(j)}}{\pi}\right)_{i} \right| \right) \right]^{p_{k}/M}$$

$$\leq \varepsilon + g\left(x^{(j)}\right)$$

Hence $x \in C^0_{\lambda}(p, f, s, \pi)$, and the proof is completed. Similarly it can be shown that the spaces $C^c_{\lambda}(p, f, s, \pi)$ and $C^{\infty}_{\lambda}(p, f, s, \pi)$ are also complete.

Theorem 4. Let inf $p_k = r > 0$. Then

(i) If
$$x \to L[C_{\lambda}^{c}(\pi)]$$
 then $x \to L[C_{\lambda}^{c}(p, f, s, \pi)]$

(ii) If
$$x \to L[C_{\lambda}^{c}(p, s, \pi))]$$
 then $x \to L[C_{\lambda}^{c}(p, f, s, \pi)]$

(iii) If
$$\gamma = \lim_{t \to \infty} \frac{f(t)}{t} > 0$$
 then $C_{\lambda}^{c}(p, s, \pi) = C_{\lambda}^{c}(p, f, s, \pi)$.

Proof. (i) Let $x \to L[C_{\lambda}^{c}(\pi)](k \to \infty)$ Since f modulus function, we have

$$\lim_{k \to \infty} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]$$

$$= \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\lim_{k \to \infty} \left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]$$

$$= 0.$$

Since $\inf p_k = r > 0$ then

$$\lim_{k\to\infty}\left|\frac{1}{\lambda(k)}\sum_{i=1}^{\lambda(k)}f\left(\left|\Delta\!\left(\frac{x}{\pi}\right)_i-L\right|\right)\right|^r=0,$$

so, for $0 < \varepsilon < 1$, $\exists k_0 \ni \text{ for all } k > k_0$,

Research Article

$$\left\lceil \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right\rceil^r < \varepsilon < 1$$

and since $p_k \ge r$ for all k,

$$\left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\frac{x_i}{\pi_i} - L\right|\right)\right]^{p_k}$$

$$\leq \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_i - L\right|\right)\right]^r < \varepsilon$$

then we obtain

$$\lim_{k\to\infty} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_i - L \right| \right) \right]^{p_k} = 0.$$

Since (k^{-s}) is bounded, we can get

$$\lim_{k\to\infty} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_i - L \right| \right) \right]^{p_k} = 0.$$

Hence $x \in C_{\lambda}^{c}(p, f, s, \pi)$.

(ii) Suppose that $x \in C_{\lambda}^{c}(p, s, \pi)$, so that

$$S_k = k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k} \to 0 \ (k \to \infty).$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Now we can write

$$R_1 = \left\{ k \in \mathbb{N} : \left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| > \delta \right\}.$$

$$R_2 = \left\{ k \in \mathbb{N} : \left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \le \delta \right\},$$

For
$$\left|\Delta\left(\frac{x}{\pi}\right)\right| - L > \delta$$
,

$$\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| < \left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \delta^{-1} < 1 + \left[\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \delta^{-1} \right],$$

where $k \in R_1$ and [t] denotes the integer part of t. By definition of modulus function we can get for $\left|\Delta\left(\frac{x}{\pi}\right)_i - L\right| > \delta$,

$$\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_{i} - L\right|\right)$$

$$\leq \left(\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_{i} - L\right|\right) \delta^{-1}\right) f(1)$$

$$\leq 2 f(1) \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left|\Delta\left(\frac{x}{\pi}\right)_{i} - L\right|\right) \delta^{-1}.$$

For
$$\left|\Delta\left(\frac{x}{\pi}\right)_i - L\right| \leq \delta$$
,

$$\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) < \varepsilon,$$

Research Article

where $k \in R_2$. Therefore,

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k}$$

$$= k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k} + k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k}$$

where the first term over $k \in R_2$ and the second over $k \in R_1$. Then we obtain

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i - L \right| \right) \right]^{p_k}$$

$$\leq k^{-s} \varepsilon^G + \left[2 f(1) \delta^{-1} \right]^G S_k \to 0 (k \to \infty).$$

This implies that $x \in C_{\lambda}^{c}(p, f, s, \pi)$

(iii) For proof, we have to show that $C_{\lambda}^{c}(p, f, s, \pi) \subset C_{\lambda}^{c}(p, s, \pi)$. Let $x \in C_{\lambda}^{c}(p, f, s, \pi)$. For any modulus function we have $\gamma = \lim_{t \to \infty} \frac{f(t)}{t} = \inf \left\{ \frac{f(t)}{t} : t > 0 \right\}$ in [4] Let $\gamma > 0$. By definition of γ we have $\gamma \leq f(t)$ for all t > 0. Hence we can get

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left(\left| \Delta \left(\frac{x}{\pi} \right)_{i} - L \right| \right) \right]^{p_{k}}$$

$$\leq k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \gamma^{-1} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_{i} - L \right| \right) \right]^{p_{k}}$$

$$\leq \gamma^{-G} k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f \left(\left| \Delta \left(\frac{x}{\pi} \right)_{i} - L \right| \right) \right]^{p_{k}}$$

SO $x \in C_{\lambda}^{c}(p, s, \pi)$.

Theorem 5. Let f_1 and f_2 be two modulus and $s, s_1, s_2 \ge 0$. Then,

- (i) $C^0_{\lambda}(p, f_1, s, \pi) \cap C^0_{\lambda}(p, f_2, s, \pi) \subset C^0_{\lambda}(p, f_1 + f_2, s, \pi),$
- (ii) $s_1 \leq s_2$ implies $C_{\lambda}^0(p, f, s_1, \pi) \subset C_{\lambda}^0(p, f, s_2, \pi)$.

Proof. (i) Let $x \in C^0_{\lambda}(p, f_1, s, \pi) \cap C^0_{\lambda}(p, f_2, s, \pi)$. From inequality (1), we have

$$\begin{split} & \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left(f_1 + f_2 \right) \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \\ & = \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_1 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) + \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_2 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \\ & \leq D \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_1 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} + D \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_2 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k}. \end{split}$$

Since (k^{-s}) is bounded, we can get

$$\begin{split} k^{-s} & \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} \left(f_1 + f_2 \right) \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \\ & \leq D \, k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_1 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} + D \, k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f_2 \left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \right]. \end{split}$$

Research Article

So this completes the proof (i).

(ii) Let $s_1 \le s_2$. Then $k^{-s_2} \le k^{-s_1}$ for all $k \in \mathbb{N}$. Hence we have

$$k^{-s_2} \left\lceil \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right\rceil^{p_k} \leq k^{-s_1} \left\lceil \frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right\rceil^{p_k},$$

this inequality implies that $C_{\lambda}^{0}(p, f, s_{1}, \pi) \subset C_{\lambda}^{0}(p, f, s_{2}, \pi)$.

The proof of following results is routine work in view of Theorem 5.

Corollary 1. Let f_1 and f_2 be two modulus and $s, s_1, s_2 \ge 0$. Then

- (i) $C^c_{\lambda}(p, f_1, s, \pi) \cap C^c_{\lambda}(p, f_2, s, \pi) \subset C^c_{\lambda}(p, f_1 + f_2, s, \pi)$,
- (ii) $C_{\lambda}^{\infty}(p, f_1, s, \pi) \cap C_{\lambda}^{\infty}(p, f_2, s, \pi) \subset C_{\lambda}^{\infty}(p, f_1 + f_2, s, \pi),$
- (iii) $s_1 \leq s_2$ implies $C_{\lambda}^c(p, s_1, \pi) \subset C_{\lambda}^c(p, s_2, \pi)$,
- (iv) $s_1 \leq s_2$ implies $C_{\lambda}^{\infty}(p, f, s_1, \pi) \subset C_{\lambda}^{\infty}(p, f, s_2, \pi)$.

Theorem 6. Let f be a modulus function, then

- (i) $(\ell_{\infty})_{\pi} = \{x \in w : \left(\frac{x_k}{\pi_k}\right) \in \ell_{\infty}\} \subset C_{\lambda}^{\infty}(p, f, s, \pi),$
- (ii) If f is bounded then $C_{\lambda}^{\infty}(p, f, s, \pi) = w$.

Proof. (i) Let $x \in (\ell_{\infty})_{\pi}$. Since $\left(\frac{x_k}{\pi_k}\right)$ is bounded $\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\Delta\left(\frac{x}{\pi}\right)_i\right)$ is also bounded, hence we can get

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta\left(\frac{x}{\pi}\right)_i \right| \right) \right]^{p_k} \le k^{-s} \left[H f(1) \right]^{p_k}$$

$$\le k^{-s} \left[H f(1) \right]^G < \infty.$$

So $x \in C_{\lambda}^{\infty}(p, f, s, \pi)$.

(ii) Let f is bounded. Then for any $x \in W$

$$k^{-s} \left[\frac{1}{\lambda(k)} \sum_{i=1}^{\lambda(k)} f\left(\left| \Delta \left(\frac{x}{\pi} \right)_i \right| \right) \right]^{p_k} \le k^{-s} M^{p_k}$$

$$\leq k^{-s} M^G < \infty$$

therefore we obtain $C_{\lambda}^{\infty}(p, f, s, \pi) = w$ and this completes the proof.

REFERENCES

Armitage DH and Maddox IJ (1989). A new type of Cesáro mean. Analysis 9(1-2) 195-204.

Başarır M (1990). Some New Sequence Spaces and Related Matrix Transformations, 100. Year University Press 6 32-38.

Johann Boos (2006). Classical and Modern Methods in Summability (Oxford University Press, Oxford).

Jürimäe E (1994). Matrix mappings between rate-spaces and spaces with speed. *Acta et Commentationes Universitatis Tartuensis* **970** 29-52.

Jürimäe E (1994). Properties of domains of mappings between rate-spaces and spaces with speed. *Acta et Commentationes Universitatis Tartuensis* **970** 53-64.

Kizmaz H (1981). On certain sequence spaces. CMB: Canadian Mathematical Bulletin 24(2) 169-176.

Maddox IJ (1968). Paranormed Sequence Spaces Generated by Infinite Matrices. *Mathematical Proceedings of the Cambridge Philosophical Society* **64** 335-340.

Maddox IJ (1969). Some Properties of Paranormed Sequence Spaces. *Journal of the London Mathematical Society* 1(2) 316-322..

Maddox IJ (1970). Elements of Functional Analysis first edition (Chambridge Univ. Press).

Maddox IJ (1986). Sequence spaces defined by a modulus. *Mathematical Proceedings of the Cambridge Philosophical Society* 100 161-166.

Research Article

Maddox IJ (1987). Inclusion between FK spaces and Kuttner's theorem. *Mathematical Proceedings of the Cambridge Philosophical Society* 101 523-527.

Nakano H (1953). Concave modulars. Journal of the Mathematical Society of Japan 5 29-49.

Osikiewicz JA (2000). Equivalence Results for Cesáro Submethods. Analysis 20 35-43.

Ruckle WH (1973). FK spaces in which the sequence of coordinate vectors is bounded. *CJM: Canadian Journal of Mathematics* **25** 973-978.

Tripathy BC and Chandra P (2011). On Some Generalized Difference Paranormed Sequence Spaces Associated with Multiplier Sequences Defined by Modulus Function. *Analysis in Theory and Applications* **27**(1) 21-27

Wilansky A (1964). Functional Analysis (Blaisdell Press).

Wilansky A (1978). Modern Methods in Topolgical Vector Spaces (McGraw-Hill).

Wilansky A (1984). Summability Through Functional Analysis (North Holland).

Zeller K (1951). Allgemeine Eigenschaften von Limitierungsverfahren. Mathematische Zeitschrift 463-487.