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ABSTRACT 

This paper deals with Computer Algebraic System (CAS) study of Tucker decomposition with non-

negative constrained (NTD). First we reviewed some important tensor and matrix algebraic operation. We 
provide an overview of NTD, algorithms and some MATLAB codes. Tucker decomposition is a useful 

technique for decomposition of any higher order tensor, which is applicable in more fields of science and 

mathematics. There are some algorithms for NTD like: HOSVD, HOOI and ALS. ALS algorithm for 

Tucker decomposition is very useful especially for noiseless data; it can also be used for the initialization 
of other algorithms for NTD. The HOSVD and HOOI algorithms can also be used for initialization of 

NTD, especially when loading matrices 𝐴(𝑛) are sparse and orthogonal or close to orthogonal.  
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INTRODUCTION 

Today higher-order tensor is useful in various fields of application. Kolda presented a review paper on all 
applications of higher-order tensor (Bader and Kolda, 2009). Tensor decomposition is useful for analysis 

any data. Various techniques of decompose a tensor has been evolved since their invention like HOSVD 

(Bhatt, 2013), CANDEC/PARAFAC (Bhatt and Kumar, 2014), Tucker decomposition, tensor unfolding 
etc. All the above techniques of tensor factorization have been developed to analyse some particular 

issues and hence checking out their impact on a common problem may yield different results. Tucker 

decomposition is a technique of decompose a tensor which is commonly useful in various fields of 

application. Tucker decomposition is used in chemical analysis (Henrion, 1994), signal processing (De 
Lathauwer and Vandewalle, 2004), Muti and Bourennane (2005) have applied to extend Wiener filters in 

signal processing and examples from psychometrics are provide by Kiers and Mechelen (2001) in their 

overview of three-way component analysis techniques and more (Bader and Kolda, 2009). In 1963, 
Tucker proposed a decomposition method for three-way arrays as a multidimensional extension of factor 

analysis. Tucker also introduces this decomposition in 1964 and 1966. In the intervening years, several 

authors developed the decomposition for N-way arrays. Tucker decomposition decomposes a tensor into a 

set of matrices and one small core tensor. Tucker decomposition is evoked by various names, three-mode 
factor analysis (3NFA/Tucker3) evoked by Tucker in 1966, three-mode PCA (3MPCA) by Kroonenberg 

and Leeuw in 1980, N-mode PCA by Kapteyn et al., in 1986, HOSVD by Lathauwer in 2000 and in 2002 

Vasilescu and Terzopoulos evoked N-mode SVD. In 1966, Tucker introduced three methods for 
computing Tucker decomposition, but he was somewhat hampered by the computing ability of the day, 

stating that calculating the eigen-decomposition for a 300 × 300 matrix may exceed computer capacity. 

The basic idea is to find those components that best capture the variation in mode-n, independent of the 
other modes. Tucker presented it only for the three-way case, but the generalization to N way is 

straightforward.  

Some Standard Operations: We are defining some standard operations, which are useful for our future 

development;  

1) Kronecker Product of matrix  𝐴 ∈ ℝ𝐼×𝐽  and 𝐵 ∈ ℝ𝐾×𝐿 is denoted by (𝐴 ⊗ 𝐵) and the resulting matrix 

order is  𝐼𝐾 ×  𝐽𝐿  (Bhatt and Kumar, 2014). 

(a) (A⊗B)(C⊗D) = AC⊗ BD, and (b)  𝐴 ⊗ 𝐵 ┼ = 𝐴┼ ⊗ 𝐵┼. 
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2) Khatri-Rao product is the column wise Kronecker product (Bhatt and Kumar, 2014). The Khatri-Rao 

product of matrix 𝐴 ∈ ℝ𝐼×𝐾 and 𝐵 ∈ ℝ𝐽×𝐾  is denoted by 𝐴 ⊙ 𝐵 and its resultant matrix order is  𝐼𝐽 ×
𝐾.  

Proposition 2.1 (Khatri- Rao product): Let 𝐴 ∈ ℝ𝐼×𝐿 , 𝐵 ∈ ℝ𝐽×𝐿  and 𝐶 ∈ ℝ𝐾×𝐿  are three matrices. 

Then Khatri-Rao products are follows:  

a. 𝐴 ⊙𝐵 ⊙ 𝐶 = (𝐴 ⊙𝐵) ⊙ 𝐶 = 𝐴 ⊙ (𝐵 ⊙ 𝐶),  

b.  𝐴 ⊙𝐵 𝑇(𝐴 ⊙ 𝐵) = 𝐴𝑇𝐴 ∗ 𝐵𝑇𝐵 and  

c.  𝐴 ⊙𝐵 ┼ =   𝐴𝑇𝐴 ∗  𝐵𝑇𝐵  
┼
 𝐴 ⊙ 𝐵 𝑇. 

Outer Product of Two Vector: The outer product of two vectors yields a matrix and is typically written as 

𝑋 = 𝑎𝑏𝑇 . For N dimensions outer product, Let 𝒩 = {1,2 … . 𝑁} and 𝑎𝑛 ∈ ℝ 
𝐼𝑛  for all 𝑛 ∈ 𝑁. Then the 

outer product of these N vectors is an Nth-order tensor and defined element wise as 
 𝑎1𝜊𝑎2𝜊……𝜊𝑎𝑁 𝑖1𝑖2…𝑖𝑁 =  𝑎1𝑖1𝑎

2𝑖2 … . . 𝑎𝑁𝑖𝑁 for 1 ≤ 𝑖𝑛 ≤ 𝐼𝑛 , 𝑛 ∈ 𝑁 (Bhatt and Kumar, 2014). 

The n-Mode Product: The n-mode product of a tensor 𝒴 ∈ ℝ𝐽1×𝐽2×….×𝐽𝑁  with a matrix 𝐴 ∈  ℝ𝐼×𝐽𝑛  is 

denoted by 𝒴 ×𝑛 𝐴. The result is of size 𝐽1 × 𝐽2 × … .× 𝐽𝑛−1 × 𝐼 × 𝐽𝑛+1 × … . .× 𝐽𝑁  and is defined element 

wise as  𝒴 ×𝑛 𝐴 𝑗1…𝑗𝑛−1𝑖𝑗𝑛 +1…𝑗𝑁 =   𝑦𝑗1𝑗2…𝑗𝑁𝑎𝑖𝑗𝑛
𝐽𝑛
𝑗𝑛=1 . There are many ways of considering n-mode 

multiplication. For example, let 𝒴 ∈ ℝ𝐼×𝐽×𝐾 , 𝐵 ∈ ℝ𝐿×𝐽  and 𝒳 = 𝒴 ×2 𝐵. One interpretation is that each 

mode-2 fiber of 𝒳 is the result of multiplying the corresponding mode-2 fiber of 𝒴 by 𝐵: 𝑥𝑖:𝑘 = 𝐵𝑦𝑖:𝑘  for 

each 𝑖 = 1,2, … , 𝐼, 𝑎𝑛𝑑 𝐾 = 1,2, … , 𝐾. 

Proposition 2.2 (n-mode matrix product): Let 𝒴 ∈ ℝ𝐽1×𝐽2×….×𝐽𝑁  be an N way tensor. 

a. Given matrices 𝐴 ∈ ℝ𝐼𝑚 ×𝐽𝑚 , 𝐵 ∈ ℝ𝐼𝑛×𝐽𝑛 ,  

𝒴 ×𝑚 𝐴 ×𝑛 𝐵 =  𝒴 ×𝑚 𝐴 ×𝑛 𝐵 =  𝒴 ×𝑛 𝐵 ×𝑚 𝐴   𝑚 ≠ 𝑛 . 

b. Given matrix 𝐴 ∈ ℝ𝐼×𝐽𝑛 , 𝐵 ∈  ℝ𝐾×𝐼 , 𝒴 ×𝑛 𝐴 ×𝑛 𝐵 =  𝒴 ×𝑛 (𝐵𝐴). 

c. Moreover, if 𝐴 ∈ ℝ𝐼×𝐽𝑛  with full column rank, then 𝒳 = 𝒴 ×𝑛 𝐴 ⟹  𝒴 = 𝒳 ×𝑛 𝐴┼. 

d. Consequently, if 𝐴 ∈ ℝ𝐼×𝐽𝑛  is orthonormal, then 𝒳 = 𝒴 ×𝑛 𝐴 ⟹  𝒴 = 𝒳 ×𝑛 𝐴𝑇 . 

Matricization of a Tensor: Especially in computations, it is important to transform a tensor into matrix. 

The matricization of a tensor 𝒳 ∈ ℝ𝐼1×𝐼2×….×𝐼𝑁  is defined as follows. Let the ordered sets ℛ =
{𝑟1, 𝑟2 … . 𝑟𝐿}  and 𝒞 = {𝑐1, 𝑐2 … . 𝑐𝑀}  be a partitioning of the modes 𝒩 = {1,2, … , 𝑁} . Recall that 𝐼𝑁  

denotes the sizes of the tensor: {𝐼1 , 𝐼2 , … 𝐼𝑁}. The matricized tensor can then be specified by 𝑋ℛ×𝒞×𝐼𝑁 ∈

ℝ𝐽×𝐾  with 𝐽 =  𝐼𝑛𝑛∈ℛ  and 𝐾 =  𝐼𝑛𝑛∈𝒞 . The indices in ℛ are mapped to the rows and the indices in 𝒞 

mapped to the columns. Specifically 𝑋 ℛ×𝒞:𝐼𝑁  𝑗𝑘 = 𝑥𝑖1 ,𝑖2 ,..,𝑖𝑁  with 

𝑗 = 1 +  [(𝑖𝑟𝑙 − 1) 𝐼𝑟
𝑙′

 
𝑙−1
𝑙 ′=1 ]𝐿

𝑙=1  𝑎𝑛𝑑 𝑘 = 1 +  [(𝑖𝑟𝑚 − 1) 𝐼𝑟
𝑚 ′

𝑚−1
𝑚 ′=1 ]𝑀

𝑚=1 .  

We can matricize a tensor by MATLAB code. Let X is a multidimensional array, and let the sets R and C 

be defined. Then MATLAB code in Appendix-I converts to a matrix and back again to a tensor. An 

important special case is whenever  ℛ is a singleton. This means that the fibers of mode n are aligned as 

the columns of the resulting matrix. The n-mode matricization of tensor 𝒳 ∈ ℝ𝐼1×𝐼2×….×𝐼𝑁  is a special 

case of matricization given by 

 𝑋𝑛 ≡ 𝑋ℛ×𝒞:𝐼𝑁𝑤𝑖𝑡𝑕 ℛ =  𝑛  𝑎𝑛𝑑 𝒞 =  1,2, …𝑛 − 1, 𝑛 + 1 …𝑁 . 

Proposition 2.3 Let 𝒴 ∈ ℝ𝐽1×𝐽2×….×𝐽𝑁  and 𝒩 = {1,2, … , 𝑁}. 

a. If 𝐴 ∈ ℝ𝐼×𝐽𝑛  then 𝒳 = 𝒴 ×𝑛 𝐴 ⇔ 𝑋𝑛 = 𝐴𝑌𝑛 . 

b. Let 𝐴𝑛 ∈  ℝ𝐼𝑛 ×𝐽𝑛  for all 𝑛 ∈ 𝒩 . If ℛ =  𝑟1, 𝑟2, … 𝑟𝐿  and 𝒞 =  𝑐1, 𝑐2 , … , 𝑐𝑀  partition 𝒩 , then 

𝒳 = 𝒴 ×1 𝐴1 ×2 𝐴2 ×3 … .×𝑁 𝐴𝑁 ⇔ 𝑋 ℛ×𝒞:𝐽𝑁  =  𝐴𝑟𝐿 ⊗ …⊗ 𝐴𝑟1 𝑌 ℛ×𝒞:𝐼𝑁   𝐴
𝑐𝑀 ⊗ …⊗ 𝐴𝑐1 𝑇. 

c. Consequently, If 𝐴𝑛 ∈ ℝ𝐼𝑛 ×𝐽𝑛  for all 𝑛 ∈ 𝒩, for any specific 𝑛 ∈ 𝒩, we have  

𝒳 = 𝒴 ×1 𝐴(1) ×2 … .×𝑁 𝐴(𝑁) ⇔ 𝑋𝑛 = 𝐴𝑛𝑌𝑛 𝐴
(𝑁) ⊗… .⊗ 𝐴(𝑛+1) ⊗𝐴(𝑛−1) ⊗ … . 𝐴(1) 

𝑇
. 
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d. Moreover, if 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝑀} ⊆ 𝒩  and 𝐴𝑛 ∈ ℝ𝐼𝑛×𝐽𝑛  for 𝑛 ∈  𝒞 , defining ℛ = 𝒩/𝒞  yields 

𝒳 = 𝒴 ×𝑐1
𝐴𝑐1 ×𝑐2

𝐴𝑐2 ×𝑐3
… .×𝑐𝑀 𝐴𝑐𝑀 ⇔ 𝑋(ℛ×𝒞:𝐾𝒩) = 𝑌 ℛ×𝒞:𝐼𝒩  𝐴

𝑐𝑀 ⊗ … .⊗ 𝐴𝑐1 𝑇  with 𝐾𝑛 =

 
𝐼𝑛   𝑖𝑓 𝑛 ∈ 𝒞
𝐽𝑛   𝑖𝑓 𝑛 ∈ ℛ

 . 

Norm and Inner Product of a Tensor: Let 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  be a tensor, then its norm is calculated by 

  𝒳 2 =   𝒳, 𝒳 =   
𝐼1
𝑖1=1

 … . .  𝑥𝑖1 ,𝑖2….𝑖𝑁
2  

𝐼𝑁
𝑖𝑁=1  

𝐼2
𝑖2=1 ,      (1) 

and the inner product of any two tensor 𝒳, 𝒴 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  is calculated by 

 𝒳, 𝒴 = 𝑣𝑒𝑐 𝒳 𝑇𝑣𝑒𝑐 𝒴 =   
𝐼1
𝑖1=1

 … . .  𝑥𝑖1 ,𝑖2….𝑖𝑁
 𝑦𝑖1 ,𝑖2….𝑖𝑁

   
𝐼𝑁
𝑖𝑁=1  

𝐼2
𝑖2=1  .   (2) 

The norm of a tensor can be transformed to a matrix or vector norm by using the matricized or vectorized 

version of the tensor (Proposition 2.3). The inner product of two rank-1 tensors can be simplified to be the 

product of the individual dot products of the components (Bhatt and Kumar, 2014),   

Proposition 2.4 Let 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  and 𝒩 =  1,2, … , 𝑁 ,   

a. Let sets ℛ and 𝒞 be a partitioning of 𝒩. Then  𝒳 =  𝑋ℛ×𝒞:𝐼𝑛
 
𝐹

. 

b. Let 𝑛 ∈ 𝒩. Then  𝒳 =  𝑋(𝑛) 𝐹
. 

c.  𝒳 =  𝑣𝑒𝑐(𝒳) 2. 

Proposition 2.5 Let , 𝒴 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  . Then  𝒳 − 𝒴 2 =  𝒳 2 −  𝒴 2 − 2 𝒳, 𝒴  . 
Proposition 2.6  

Let 𝒳, 𝒴 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  with 𝒳 = 𝑎(1)𝜊𝑎(2)𝜊… . 𝜊𝑎(𝑁)  any 𝒴 = 𝑏(1)𝜊𝑏(2)𝜊… . 𝜊𝑏(𝑁) , then  𝒳, 𝒴 =
  𝑎𝑛 , 𝑏𝑛  𝑁

𝑛=1 . 

Proposition 2.7 Let 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  and let Q be a 𝐽 × 𝐼𝑛  orthonormal matrix. Then  𝒳 =  𝒳 ×𝑛 𝑄 . 

Proposition 2.8 Let 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛−1×𝐽×𝐼𝑛+1×….×𝐼𝑁 ,  𝒴 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛−1×𝐾×𝐼𝑛+1×….×𝐼𝑁  and 𝐴 ∈ ℝ𝐽 ×𝐾 . 
Then  𝒳, 𝒴 ×𝑛 𝐴 =  𝒳 ×𝑛 𝐴𝑇 , 𝒴  . 
Nonnegative Tucker Decomposition: Tucker Decomposition is also known as Tucker3 decomposition or 

best rank (𝐽, 𝑅, 𝑃) approximation. Let a third-order tensor 𝒜 ∈ ℝ𝐼×𝑇×𝑄  and three non-negative indices 
 𝐽, 𝑅, 𝑃 ≪  𝐼, 𝑇, 𝑄 , then by Tucker decomposition, we find three component matrices called factor or 

loading matrices or factors: 𝐴 =  𝒂1, 𝒂2, … . , 𝒂𝐽  ∈ ℝ𝐼×𝐽 , 𝐵 =  𝒃1, 𝒃2, … . , 𝒃𝑅 ∈ ℝ𝑇×𝑅  and 𝐶 =

 𝒄1 , 𝒄2, … . , 𝒄𝑝  ∈ ℝ𝑄×𝑃  and a core tensor 𝒞 ∈  𝑐𝑗𝑟𝑝  ∈  ℝ𝐽×𝑅×𝑃:  

𝒜 =      𝑐𝑗𝑟𝑝
𝑃
𝑝=1

𝑅
𝑟=1 (𝒂𝒋𝜊𝒃𝒓𝜊𝒄𝒑)

𝐽
𝑗=1 +  ℰ,        (3) 

where ℰ is an error tensor.  

We can represent equation (3) in different types mathematical formulation with respect to different 

operator, equation (3) is outer product operator of Tucker decomposition. When one use scalar, mode-n 

multiplication, vector and Kronecker product operator, we find different types of representation of 
equation (3) respectively: 

𝑎𝑖𝑡𝑞 =      𝑐𝑗𝑟𝑝
𝑃
𝑝=1

𝑅
𝑟=1 (𝑎𝑖𝑗 𝜊 𝑏𝑡𝑟𝜊 𝑐𝑞𝑝 )𝐽

𝑗=1 +  𝑒𝑖𝑡𝑞 ,       (4) 

it is also called element wise form. 

𝒜 = 𝒞 ×1 𝐴 ×2 𝐵 ×3 𝐶 +  ℰ,          (5)  

𝑣𝑒𝑐 𝒜 = 𝑣𝑒𝑐 𝐴 1  ≅  𝐶 ⊗ 𝐵 ⊗ 𝐴 𝑣𝑒𝑐(𝒞),         (6) 

where 𝐴(1) matricization of tensor 𝒜 (Ist mode) and Kronecker product form is  

𝐴(1) ≅ 𝐴𝐶(1) 𝐶 ⊗ 𝐵 𝑇 , 

𝐴(2) ≅ 𝐴𝐶(2) 𝐶 ⊗ 𝐵 𝑇 ,          (7) 

𝐴(3) ≅ 𝐴𝐶(3) 𝐶 ⊗ 𝐵 𝑇 , 

where 𝑎𝑗 ∈ ℝ𝐼 , 𝑏𝑗 ∈ ℝ𝑇 , and 𝑐𝑗 ∈ ℝ𝑄  are the vector of component matrices 𝐴, 𝐵 and 𝐶 respectively and 

𝑐𝑗𝑟𝑝  are scaling factors which are the entries of a core tensor 𝒞 ∈  𝑐𝑗𝑟𝑝  ∈  ℝ𝐽×𝑅×𝑃 . If we impose non-

negativity constraints the problem of estimating the component matrices and a core tensor is converted 
into a generalized NMF problem called the non-negative Tucker decomposition. Let we have three 
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matrices and a core tensor, then we can find a Tucker tensor by following MATLAB code (See 

Appendix-II): 

𝑀 =  
1 2 3
7 6 5
1 4 5

4 5 6
4 3 2
6 7 5

 ,  𝑀 is a matrix and converting M into G is a core tensor of size 3 × 2 × 3 

𝐺 : , : ,1 =  
1 2
7 6
1 4

 ,    𝐺 : , : ,2 =  
3 4
5 4
5 6

 ,     𝐺 : , : ,3 =  
5 6
3 2
7 5

 , 

𝐴 =  

1 2 5
4 5 6
1
4

5
5

9
6

 , 𝐵 =   

1 2
4 5
1 5
5 6

  𝑎𝑛𝑑 𝐶 =  

1 5 1
4 5 2
5
6

9
9

8
8

  assume three matrix 𝐴, 𝐵 and C. 

T is a  Tucker tensor of size 4 x 4 x 4, 

 

T : , : ,1 =

814 2419
1429 4258

1651 2954
2887 5201

1531 4567
1429 4258

3088 5579
2887 5201

, T : , : ,2 =

1194 3528
2141 6356

2442 4306
4349 7761

2279 6764
2141 6356

4631 8259
4349 7761

,  

 

T : , : ,3 =

2466 7380
4384 13126

4950 9018
8794 16040

4606 13834
4384 13126

9196 16910
8794 16040

, T : , : ,4 =

2554 7630
4553 13616

5140 9322
9149 16637

4787 14354
4553 13616

9581 17543
9149 16637

 

  

The Higher-Order Tucker Decomposition [1]: The higher-order Tucker decomposition is described as: 

let a given tensor 𝒜 ∈ ℝ𝐼1×𝐼2×….×𝐼𝑁  into an unknown core tensor  𝒞 ∈  ℝ𝐽1×𝐽2×….×𝐽𝑁  multiplied by a set of 

𝑁  unknown component matrices, 𝐴(𝑛) =  𝒂1
(𝑛)

, 𝒂2
(𝑛)

, … . , 𝒂𝐽𝑛

(𝑛)
 ∈ ℝ𝐼𝑛 ×𝐽𝑛 , (𝑛 = 1,2, … , 𝑁)  is formulated 

as:  

𝒜 =    ……  𝑐𝑗1 ,𝑗2 ,…𝑗𝑁
𝐽𝑁
𝐽𝑁 =1

𝐽2
𝐽2=1 (𝒂𝐽1

 1 
𝜊𝒂𝐽2

 2 
𝜊… . 𝜊𝒂𝐽𝑁

(𝑁)
)

𝐽1
𝐽1=1 +  ℰ =

𝒞 ×1 𝐴(1) ×2 𝐴(2) ×3 … .×𝑁 𝐴(𝑁)  +  ℰ =  𝒞 ×  𝐴 +  ℰ =  𝒜 + ℰ,        (8)      

where tensor 𝒜  is an approximation tensor of 𝓐, and tensor ℰ =  𝒜 − 𝒜  denotes the error tensor.  

 
Figure 1: Visualization of Higher Order Tucker Decomposition 

 

Algorithms for Non-negative Tucker Decomposition: Here we discuss some important algorithms of 

NTD: 

HOSVD and HOOI Algorithms: HOSVD and its low-rank counterpart: HOOI (Lathauwer, 2008), 
(Lathauwer et al., 2000) is useful as an initialization tool for non-negative Tucker decomposition. The 

HOSVD can be considered as a special form of Tucker decomposition, which decomposes an 𝑁-th order 

tensor 𝒜 ∈ ℝ𝐼1×𝐼2×….×𝐼𝑁  as  

𝒜 = 𝒞 ×1 𝑈(1) ×2 𝑈(2) ×3 … .×𝑁 𝑈(𝑁),         (9) 
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where 𝑈𝑛 =  𝒖1
 𝑛 

, 𝒖2
 𝑛 

,… . , 𝒖𝐽𝑁

 𝑛 
 ∈ ℝ(𝐼1×𝐼𝑛 ) , (𝑛 = 1,2, … . , 𝑁) , are orthogonal matrices and the core 

tensor 𝒞  is all orthogonal and ordered tensor of the same dimension as the data tensor 𝒜 . All-

orthogonality means that all sub-tensors 𝒞𝑖𝑛=𝑘  and 𝒞𝑖𝑛=𝑙  obtained by fixing the 𝑛-th index to 𝑘, 𝑙  are 

mutually orthogonal with respect to inner products for all possible value of 𝑛, 𝑘 and 𝑙, subject to 𝑘 ≠ 𝑙, 
whereas ordering means that  

 𝒞𝑖𝑛=1  
𝐹
≥  𝒞𝑖𝑛=2  

𝐹
≥ …… ≥  𝒞𝑖𝑛=𝐼𝑛   

𝐹
∀ 𝑛.          (10) 

This decomposition is a generalization of the standard SVD for the matrix 𝐴 ∈ ℝ𝐼×𝑇 , 

𝐴 = 𝑈𝐶𝑉𝑇 = 𝐶 ×1 𝑈 ×2 𝑉 =  𝜎𝑖
𝐼
𝑖=1 𝒖𝑖𝒗𝑖

𝑇.        (11)  

HOSVD can be written in matrix form as 

 𝐴(𝑛) = 𝑈𝑛𝐶 𝑛  𝑈
 𝑁 ⊗ … . .⊗ 𝑈 𝑛+1 ⊗ 𝑈 𝑛−1 ⊗… .⊗ 𝑈 1  

𝑇
,       (12) 

which admits representation in a compact form as  

𝐴(𝑛) = 𝑈𝑛𝐶 𝑛 𝑉
(𝑛)𝑇 ,           (13) 

where   𝑉(𝑛) =  𝑈 𝑁 ⊗… . .⊗ 𝑈 𝑛+1 ⊗𝑈 𝑛−1 ⊗ … .⊗ 𝑈 1  
 
 .    (14) 

It then follows that HOSVD can be computed directly in two steps: 

1. For 𝑛 = 1,2, … , 𝑁  compute the unfolded matrices 𝐴𝑛  from 𝒜  and their standard SVD: 𝐴(𝑛) =

𝑈𝑛𝐶 𝑛 𝑉
(𝑛)𝑇 . The orthogonal matrices 𝑈(𝑛)  are leading left singular vectors of 𝐴(𝑛) . Alternatively, 

compute EVD of the covariance matrices; 𝐴 𝑛 
𝑇 𝐴(𝑛) = 𝑈𝑛𝛬𝑛𝑈(𝑛)𝑇 .  

2. Compute the core tensor using the inversion formula 

𝒞 =  𝒜 ×1 𝑈(1)𝑇 ×2 𝑈(2)𝑇 ×3 … .×𝑁 𝑈(𝑁)𝑇.        (15) 

The HOSVD is computed by means of 𝑁 standard matrix SVD’s and we can reduce the computational 
cost of HOSVD by using fast and efficient SVD algorithms (Chen and Saad, 2009; Elden and Savas, 

2009). 

HOSVD results in an ordered orthogonal basis for multi-dimensional representation of input data spanned 
by each mode of the tensor. In order to achieve dimensionality reduction in each space, we project the 

data sample onto the principal axis and keep only the component that corresponds to the leading singular 

values in that subspace. This leads to the concept of the best 𝑅1, 𝑅2 , … . 𝑅𝑁  approximation (Chen and 

Saad, 2009; Elden and Savas, 2009) formulated as follows: Given a 𝑁-th order tensor 𝓐, find a lower 

rank tensor 𝒜  of same dimension which minimize the FIT 

𝒜 = arg  min𝒜  𝒜 − 𝒜  
𝐹

2
 .          (16)       

The approximated tensor is represented as  

𝒜 =  𝒞 ×1  𝑈 (1) ×2 𝑈 (2) ×3 … .×𝑁 𝑈 (𝑁) ,          (17) 

where 𝒞 ∈ ℝ𝑅1×𝑅2×…..×𝑅𝑁  is the core tensor and 𝑈 (𝑛) =  𝒖1
(𝑛)

, 𝒖2
(𝑛)

, … . . , 𝒖𝑅𝑛

(𝑛) ∈ ℝ𝐼𝑛 ×𝑅𝑛  are reduced 

orthogonal matrices with 𝑅𝑛 ≤ 𝐼𝑛  for 𝑛 = 1,2, … , 𝑁. 

A simple approach for solving this problem is to apply a truncated HOSVD, whereby the left singular 
vectors corresponding to the smallest singular values are ignored. In other words, an approximation with 

prescribed accuracy can be obtained by appropriate truncation of singular vector of 𝑈𝑛  component 

matrices, corresponding to the singular values below a chosen threshold. Unfortunately, the HOSVD does 

not attempt to minimize the FIT 𝒜 − 𝒜  
𝐹

 
, and does not produce an optimal lower rank 𝑅1 , 𝑅2, … . , 𝑅𝑁  

approximation to 𝒜 , because it optimizes for each mode separately without taking into account 
interactions among the modes. However, the HOSVD often produces a close to optimal low rank 

approximation and is relatively fast in comparison with the iterative algorithms discussed blow (Turney, 

2007). The computation of the best rank approximation of a tensor requires an iterative ALS algorithm 
called HOOI (Lathauwer et al., 2000; Lathauwer and Vandewalle, 2004) 
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Algorithm-I: HOOI Initialization for NTD 

Input: 𝓐: Input data of size 𝐼1 × 𝐼2 × … . .× 𝐼𝑁 , 

𝐽1, 𝐽2, … . . , 𝐽𝑁 : Number of basis components for each factor. 

Output: 𝑁  factors 𝐴(𝑛) ∈ ℝ+
𝐼𝑛 ×𝐽𝑛  and a core tensor 𝒞 ∈ ℝ+

𝐽1×𝐽2×…..×𝐽𝑁 , such that the cost function in 

equation (16) is minimized.  

begin 

 HOSVD or random initialization for all factors 𝐴(𝑛) 

 repeat 

  for n= 1to 𝑁 do 

   𝒲(−𝑛) = 𝒜 ×−𝑛 {𝐴𝑇} 

     𝐴 𝑛 ,   𝑛 , 𝑉𝑛  = 𝑠𝑣𝑑𝑠(𝑊 𝑛 
 −𝑛 

, 𝐽𝑛 , ′𝐿𝑀′)               /* 𝑊 𝑛 
 −𝑛 

≈ 𝐴 𝑛    (𝑛) 𝑉 𝑛 𝑇 (1
*
)/    

 𝐴(𝑛) =  𝐴 𝑛  
+

       /* need to fix signs in advance */ 

  end  
 until a stopping criterion is met   /* convergence condition*/ 

 𝒢 = 𝒲(−𝑁) ×𝑁 𝐴(𝑁)𝑇 
end 

 

((1
*
)

 
In practice, we use the MATLAB function eigs, i.e.,  𝐴 𝑛 , 𝐷𝑛  = 𝑒𝑖𝑔𝑠  𝑊 𝑛 

 −𝑛 
𝑊 𝑛 

 −𝑛 𝑇
, 𝐽𝑛
′ 𝐿𝑀′ , to 

find the largest magnitude eigenvalues and eigenvectors of a sparse matrix). 

The HOOI usually uses the HOSVD to initialize the matrices and the whole procedure can be described 

as follows. Assuming that the basis orthogonal matrices 𝑈 (𝑛) are known or estimated, the core tensor can 
be obtained as (Lathauwer et al., 2000) 

𝒞 = 𝒜  ×1  𝑈 (1)𝑇 ×2 𝑈 (2)𝑇 ×3 … .×𝑁 𝑈 (𝑁)𝑇 .          (18) 

Therefore, instead of minimizing equation (16), we can equivalently maximize the cost function. 

𝐽 𝑈  1 , 𝑈  2 ,… . , 𝑈  𝑁  =   𝒜 ×1  𝑈  1 𝑇 ×2 𝑈  2 𝑇 ×3 … .×𝑁 𝑈  𝑁 𝑇   
𝐹

2
,       (19) 

where only the basis matrices  𝑈  𝑛  are unknown. For example, with  𝑈 (1),… , 𝑈 (𝑛−1), 𝑈 (𝑛+1), … . , 𝑈 (𝑁) 

fixed, we can project tensor 𝓐 onto the {𝑅1 , 𝑅2, … . , 𝑅𝑛−1, 𝑅𝑛+1 , … . . , 𝑅𝑁} - dimensional space defined as  

𝒲−(𝑛) =  𝒜 ×1 𝑈 (1)𝑇 … ×𝑛−1 𝑈 (𝑛−1)𝑇 ×𝑛+1 𝑈 (𝑛+1)𝑇 … .×𝑁 𝑈 (𝑁)𝑇 ,      (20) 

and then the orthogonal matrix 𝑈 (𝑛) can be estimated as an orthonormal basis for the dominant subspace 

of the projection by applying the standard matrix SVD for mode-n unfolding matrix 𝑊(𝑛)
(−𝑛)

. The ALS 

algorithm is used to find the optimal solution for equation (16) (Lathauwer et al., 2000; Lathauwer and 

Vandewalle, 2004). In each step of the iteration, we optimize only one of the basis matrices, while 

keeping others fixed. The HOOI algorithm was introduced by Lathauwer et al., (2000) and recently 
extended and implemented by Bader and Kolda (2009) in their MATLAB tensor toolbox (Bader and 

Kolda, 2008). The Pseudo-code of the algorithm is described in detail in algorithm-I. To summarize, the 

idea behind this algorithm is to apply SVD and of find 𝑅𝑛  leading left singular vectors of the mode-n 

matricized version of the product tensor 𝒲(−𝑛) = 𝒜 ×−𝑛  𝐴𝑇 . By imposing the non-negative constraints 

on all factor 𝐴(𝑛) and with only one or two iterations, the ALS procedure becomes a useful initialization 
tool for NTD. 

The HOOI algorithm generally improves the performance of the best rank approximation as compared to 
the HOSVD, although it does not always guarantee a globally optimal result.  Moreover, it is more 

computationally demanding than HOSVD since HOOI is an iterative algorithm while the HOSVD is not.  

ALS Algorithm for NTD: The NTD is another special kind of the Tucker decomposition (Tucker, 1966), 

with non-negative constraints, which has already found some applications in neuroscience, bioinformatics 
and chemometrics (Lathauwer et al., 2000; Morup et al., 2008). There are several existing NTD 

algorithms (Friendlander and Hatz, 2008; Kim and Choi, 2007; Morup et al., 2008), which process 
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tensors using global learning rules. For large-scale problems, the raw data tensor and its temporary 

variables stored in memory are very large-scale, and often cause memory overflow error during the 

decomposition process. One approach to avoid this problem is to process and update the tensor and its 
factors following block-wise or vector procedures instead of the operation on whole matrices or tensors 

(Phan and Cichocki, 2008). This approach is referred to as a local decomposition or local learning rule, 

and will be discussed in the next sections.  

For a global ALS algorithm with nonlinear projection, the Tucker decomposition for an 𝑁-th order tensor 

𝒜 ∈ ℝ𝐼1×𝐼2×….×𝐼𝑁  can be written in a matricized form as  

𝐴(𝑛) = 𝐴(𝑛)𝐶(𝑛)𝐴
⊗−𝑛𝑇 =  𝐴(𝑛)𝐶(𝑛)𝑍(−𝑛)  𝑛 = 1,2, … . , 𝑁 ,        (21) 

or equivalently in the vectorized form as  

𝑣𝑒𝑐 𝐴 𝑛  = 𝑣𝑒𝑐 𝐴 𝑛 𝐶 𝑛 𝐴
⊗−𝑛𝑇 =  𝐴⊗−𝑛 ⊗ 𝐴 𝑛  𝑣𝑒𝑐 𝐶 𝑛  ,       (22) 

where 𝑍(−𝑛) = 𝐴⊗−𝑛𝑇 =  𝐴 𝑁 ⊗ … . .⊗ 𝐴 𝑛+1 ⊗ 𝐴 𝑛−1 ⊗ … . .⊗ 𝐴 1  
𝑇
.     (23) 

The above representation forms a basis for the derivation of various updating algorithms for NTD (Kim et 

al., 2008; Phan and Cichocki 2008). For example, by minimizing alternatively the cost function  𝐴(𝑛) −

𝐴(𝑛)𝑍(−𝑛) for 𝑛=1,2,…𝑁, and finding fixed points, we obtain the ALS algorithm 

𝐴(𝑛) ←  𝐴 𝑛 (𝐶 𝑛 𝑍 −𝑛  
┼

]+, (𝑛 = 1,2, … , 𝑁),         (24) 

𝐶(𝑛) ← [𝐴 𝑛 ┼𝐴 𝑛 𝑍 −𝑛 
┼

]+,          (25) 

for which the simplified form is given by  

𝐴(𝑛) ←  𝐴 𝑛  𝐴
┼ 

⊗−𝑛
𝐶(𝑛)
┼  

+
, 𝑛 = 1,2, … , 𝑁,         (26) 

𝒞 ←  𝒜 ×  𝐴┼  
+

=  𝒜 ×1 𝐴(1)┼ ×2 𝐴(2)┼ … .×𝑁 𝐴(𝑁)┼.       (27) 

 

HOSVD, HOOI and ALS Algorithms as Initialization Tools for Nonnegative Tensor Decomposition: 

The ALS algorithm for Tucker decomposition is very useful, as it can also be used for the initialization of 

other algorithms for NTD. The HOSVD and HOOI algorithms can also be used for initialization of NTD, 

especially when loading matrices 𝐴(𝑛) are sparse and orthogonal or close to orthogonal. The basic idea of 

the HOSVD and HOOI initialization of NTD is to apply SVD to unfolded matrices 𝐴(𝑛) or a mode-n 

matricized version of the product tensor 𝒲(−1) = 𝒜 ×−𝑛 {𝐴𝑇}, find 𝑅𝑛 = 𝐽𝑛  leading left singular vectors 

of the unfolded matrices, and finally impose the non-negativity constraints on all factors 𝐴(𝑛)(typically 
only one or two iterations is sufficient). See pseudo code listing in Algorithms 2 and 3. The advantage of 

the HOSVD and HOOI approaches over standard ALS is that they can estimate the dimension of the core 

tensor by analyzing the distribution of singular values. 

 

Algorithm-2: HOSVD initialization 

Input: 𝓐: input data of size 𝐼1 × 𝐼2 × … .× 𝐼𝑁 , 
𝐽1, 𝐽2, … . , 𝐽𝑁 : Number of basis components for each factor. 

Output: 𝑁  factors 𝐴(𝑛) ∈ ℝ+
𝐼𝑛 ×𝐽𝑛  and a core tensor 𝒞 ∈ ℝ+

𝐽1×𝐽2×…..×𝐽𝑁 , such that the cost function in 

equation (16) is minimized.  

begin 

for n =1 to 𝑁 do 

  𝐴 𝑛 , 𝑆 𝑛 , 𝑉 𝑛  = 𝑠𝑣𝑑𝑠(𝐴 𝑛 , 𝐽𝑛 , ′𝐿′)   

 𝐴(𝑛) =  𝐴 𝑛  
+

  

end  

 𝒞 = 𝒜 ×  𝐴 𝑇  

end    
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 Algorithm-3: HOOI initialization: 

Input: 𝓐: input data of size 𝐼1 × 𝐼2 × … .× 𝐼𝑁 , 
𝐽1, 𝐽2, … . , 𝐽𝑁 : Number of basis components for each factor. 

Output: 𝑁  factors 𝐴(𝑛) ∈ ℝ+
𝐼𝑛 ×𝐽𝑛  and a core tensor 𝒞 ∈ ℝ+

𝐽1×𝐽2×…..×𝐽𝑁 , such that the cost function in 

equation (16) is minimized.  

begin  

   𝐴 , 𝒞 = 𝐻𝑂𝑆𝑉𝐷(𝒜, [𝐽1, 𝐽2, … . , 𝐽𝑁])  

for n = 1 to 𝑁 do 

𝒲(−𝑛) = 𝒜 ×−𝑛 {𝐴𝑇},  

 𝐴 𝑛 , 𝐷𝑛  = 𝑒𝑖𝑔𝑠(𝑊 𝑛 
 −𝑛 

𝑊 𝑛 
 −𝑛 

, 𝐽𝑛 , ′𝐿𝑀′)  

 𝐴(𝑛) =  𝐴 𝑛  
+

  

end  

𝒞 = 𝒲(−𝑁) ×𝑁 𝐴 𝑁 𝑇  

end 

 

Conclusion 

𝑁 -way Tucker decomposition, decomposition a higher-order tensor into an unknown core tensor 

multiplied by a set of 𝑁 unknown component matrices. It is a fascinating emerging field of research, with 

many applications. HOSVD and its low-rank counterpart: HOOI is useful as an initialization tool for 

NTD. The HOSVD can be considered as a special form of Tucker decomposition. The HOOI algorithm 
generally improves the performance of the best rank approximation as compared to the HOSVD, although 

it does not always guarantee a globally optimal result.  Moreover, it is more computationally demanding 

than HOSVD since HOOI is an iterative algorithm while the HOSVD is not. The ALS algorithm for 
Tucker decomposition is very useful, as it can also be used for the initialization of other algorithms for 

NTD. The HOSVD and HOOI algorithms can also be used for initialization of NTD, especially when 

loading matrices are sparse and orthogonal or close to orthogonal. The basic idea of the HOSVD and 

HOOI initialization of NTD is to apply SVD to unfolded matrices 𝐴(𝑛) or a mode-n matricized version of 

the product tensor 𝒲(−1) = 𝒜 ×−𝑛 {𝐴𝑇}, find 𝑅𝑛 = 𝐽𝑛  leading left singular vectors of the unfolded 

matrices, and finally impose the nonnegativity constraints on all factors 𝐴(𝑛) . The advantage of the 
HOSVD and HOOI approaches over standard ALS is that they can estimate the dimension of the core 

tensor by analyzing the distribution of singular values. 
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Appendix-I: (MATLAB code for convert a tensor to matrix and back to tensor) 

X = rand(1,2,3,4); 

R = [2 3];  

C = [4 1]; 

I = size(X); 

J = prod(I(R));  

K = prod(I(C)); 

Y = reshape(permute(X,[R C]),J,K); % convert X to matrix Y 

Z = ipermute(reshape(Y,[I(R) I(C)]),[R C]); % convert back to tensor 
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Appendix-II: (MATLAB code for make a Tucker tensor) 

M = [1 2 3 4 5 6;7 6 5 4 3 2; 1 4 5 6 7 5]; %M is a matrix of order (3 by 6) 

G = tensor(M, [3 2 3]); %<-- Convert M to as a core tensor. 

% Let we find a tensor of order (4 by 4 by 4), then according Fig.(1), set 

% the matrices likes A, B and C. 

A = [1 2 5 ; 4 5 6 ; 1 5 9 ; 4 5 6]; % Because I1 =4 and J1 = 3.  

B = [1 2 ; 4 5 ; 1 5; 5 6];% Because I2 =4 and J2 =2.  

C = [1 5 1; 4 5 2; 5 9 8; 6 9 8]; % Because I3 = 4 and J3 =3.  

T = ttm(G,{A, B, C}); % We can find Tucker Tensor T.  

 

Nomenclature: 
S.N. Notation used Notation’s meaning 

1.  ο Outer product of two vector/matrix/tensor 

2.  ⊗ Kronecker product 

3.  𝒜, 𝒞, 𝒴,𝒳, ℰ ………; Higher order Tensor 

4.  𝐴, 𝐵, 𝐶, ……𝑀…. Matrices (𝐴 ∈ ℝ𝐼×𝐽  representing hidden components) 

5.  a, b, …;𝛼, 𝛽, ….;𝑎1 , 𝑎2 .. Scalars (i.e. t is used for transpose of  matrix and vector) 

6.  a,b,c… Vectors 

7.  𝐼1 , 𝐼2 ……. ; 𝐼, 𝐽, 𝐾…. Indices 

8. S *, . Product 

9.  ×𝑛  n-mode product of tensor by matrix 

10.  ℝ Real vector space 

11.  𝐴(𝑛), 𝐶(𝑛)…. Matricization of tensor 𝒜, 𝒞…. 

12.  ALS Alternative least Square  

13.  ⊙ Khatri-Rao Product 

14.     + Non-negative Data set 

15.     ┼ Superscript symbol for Moore-Penrose Pseudo-inversion of a matrix 

16.     𝑇  Transpose of matrix and vector 

17.  HOOI Higher order orthogonal Iteration 

18.  HOSVD Higher order singular value decomposition 

19.  SVD Singular value decomposition 

20.  NTD Non-negative Tucker decomposition 

21.  EVD Eigen value decomposition 

22.  NMF Non-negative matrix factorization  

23.  CAS Computer Algebraic System 
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