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ABSTRACT 

A steady two-dimensional laminar boundary layer flow of an incompressible viscous electrically 

conducting fluid near a stagnation point of stretching surface in the presence of magnetic field is 

analyzed. The governing partial differential equations are non-dimensionalzed and transformed into a 
system of nonlinear ordinary differential similarity equations, in a single independent variable. The 

resulting nonlinear ordinary differential equations are solved under appropriate transformed boundary 

conditions using Runge-Kutta-Fehlberg Forth-Fifth order method. The influence of various parameters 
are presented and discussed.  
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NOMENCLATURE 

𝑎        proportionality constant of the free stream velocity  

𝑐 proportionality constant of the stretching surface velocity 

𝐶𝑝          specific heat of the fluid at constant pressure  

𝐸𝑐         Eckert number 

𝑓           dimensionless stream function 

𝐻0          applied magnetic field 

𝐻𝑎              Hartmann number 

𝑃𝑟         Prandtl number 

𝑇 temperature of the fluid  

𝑇𝑤     temperature at the surface  

𝑇∞    free stream temperature 

𝑢, 𝑣 velocity component of the fluid along the x and y directions, respectively 

𝑢𝑤          velocity at the surface 

𝑢𝑒(𝑥)          free stream velocity  

𝑥, 𝑦 Cartesian coordinates along the surface and normal to it, respectively   

Greek symbols  

𝜌  density of the fluid 

𝜇                 viscosity of the fluid 

𝜇𝑒          magnetic permeability  

𝜎𝑒  electrical conductivity 

𝜂 dimensionless similarity variable 

𝜅                 thermal conductivity 

𝜐 kinematic viscosity   

𝛹 stream function 

𝜃 dimensionless temperature  

Superscript  

′ derivative with respect to 𝜂  

Subscripts  

𝑤 properties at the surface  

∞ free stream condition 
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INTRODUCTION 

The hydromagnetic flow and heat transfer in a viscous incompressible fluid over a moving continuous 

stretching surface is a significant type of flow has considerable practical applications in industries and 
engineering. For example, materials manufactured by extrusion processes, heat-treated materials raveling 

between a feed roll and a wind-up roll or on a conveyor belt possess the characteristics of a moving 

continuous surface. Many metallurgical processes involve the cooling of continuous strips or filaments by 
drawing them through a quiescent fluid and that in the process of drawing, these strips are sometimes 

stretched. The classical problem was introduced by Blasius (1908) where he considered the boundary 

layer flow on a fixed flat plate. Different from Blasius (1908), the boundary layer flow over a stretching 

sheet was first studied by Sakiadis (1961). Later, Crane (1970) extended this idea for the two-dimensional 
problem where the velocity is proportional to the distance from the plate. The heat and mass transfer over 

a stretching sheet subject to suction or blowing (injection) was investigated by Gupta and Gupta (1977) 

and Magyari and Keller (1999, 2000). Mahapatra and Gupta (2002, 2004) studied the heat transfer in the 
steady two-dimensional stagnation-point flow of a viscous, and incompressible Newtonian and 

viscoelastic fluids over a horizontal stretching sheet considering the case of constant surface temperature. 

As many natural phenomena and engineering problems are worth being subjected to MHD analysis, the 
effect of  magnetic field on the laminar flow over a stretching surface was studied by a number of 

researchers Jhankal and Kumar (2013), Pavlov (1974), Chakrabarthi and Gupta (1979), Chima (1993), 

Noor et al., (2010) etc. 

Motivated by works mentioned above and practical applications, the main concern of the present paper is 
to study the problem of steady two-dimensional laminar boundary layer flow of an incompressible 

viscous electrically conducting fluid near a stagnation point of stretching surface in the presence of 

magnetic field. 

Formulation of the Problem 

Let us consider two-dimensional steady boundary layer flow of a viscous incompressible electrically 

conducting fluid near a stagnation point over a flat surface such that surface is stretched in its own plane 

with velocity proportional to the distance from the stagnation point in the presence of an externally 

applied normal magnetic field of constant strength 𝐻0 . The stretching surface has uniform temperature 𝑇𝑤  

and a linear velocity 𝑢𝑤  while the velocity of the flow external to the boundary layer is 𝑢𝑒(𝑥). Under the 

usual boundary layer approximations, the governing equations of continuity, momentum and energy 
under the influence of externally imposed normal magnetic field are: 

 
𝜕𝑢

𝜕𝑥
+
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2

+ 𝜎𝑒𝜇𝑒
2𝐻0

2𝑢2                    …(3) 

Along with the boundary conditions are: 

𝑦 = 0:𝑢 = 𝑢𝑤 = 𝑐𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤   

𝑦 → ∞: 𝑢 → 𝑢𝑒 𝑥 = 𝑎𝑥, 𝑇 → 𝑇∞                                                …(4) 

The continuity equation (1) is satisfied by introducing a stream function 𝛹 such that 𝑢 =
𝜕𝛹

𝜕𝑦
 and = −

𝜕𝛹

𝜕𝑥
 . 

                …(5) 

The momentum and energy equations can be transformed into the corresponding ordinary nonlinear 

differential equations by using the following transformations: 

𝜂 = 𝑦  
𝑐

𝜈
 

1/2

 ,  𝑓 𝜂 =
𝛹

𝑥(𝑐𝜈 )1/2 and 𝜃 𝜂 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
          …(6) 

Then, the transformed non-linear differential equations are:  

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 −𝐻𝑎
2𝑓′ + 𝐻𝑎

2𝜆 + 𝜆2 = 0                       …(7) 
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ + 𝐸𝑐𝑓′′2 + 𝐻𝑎

2𝐸𝑐𝑓′2 = 0                                  …(8) 

The transformed boundary conditions are: 
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𝜂 = 0: 𝑓 = 0, 𝑓′ = 1, 𝜃 = 1  

𝜂 → ∞: 𝑓′ = 𝜆, 𝜃 = 0.                                                               …(9) 

Where prime denotes differentiation with respect to η, 𝐻𝑎 = 𝜇𝑒𝐻0  
𝜎𝑒

𝜌𝑐
 

1/2

 is the Hartmann number, 

𝑃𝑟 =
𝜇𝑐𝑝

𝜅
 is the Prandtl number, 𝜆 =

𝑎

𝑐
 is the velocity parameter and 𝐸𝑐 =

𝑢𝑤
2

𝐶𝑝 (𝑇𝑤−𝑇∞)
 is the Eckert number. 

 

NUMERICAL SOLUTION AND DISCUSSION 
The non-linear differential equations (7) and (8) subject to the boundary conditions (9) is solved 

numerically using Runge-Kutta-Fehlberg Forth-Fifth order method. To solve this equation we adopted 

symbolic algebra software Maple. Maple uses the well known Runge-Kutta-Feulberg Forth-Fifth 
(RKF45) order method to generate the numerical solution of boundary value problem.  

The numerical results are obtained for velocity parameter (𝜆) 0.1 and 2.0, fixed values of Prandtl number 

(Pr) 0.71 and Eckert number (Ec) 0.01. The effect of Hartmann number (𝐻𝑎) on the velocity and 

temperature are presented in Figures 1 to 4. 

 

 

Figure 1: Velocity profile for various value of Hartmann number 𝑯𝒂 when λ=0.1 

 

 
Figure 2: Velocity profile for various value of Hartmann number 𝑯𝒂 when λ=2.0 

Ha = 0, 0.5, 1, 2. 

Ha = 0, 0.5, 1, 2. 
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Figure 3: Temperature profile for various value of Hartmann number 𝑯𝒂 when λ=0.1, 

Pr=0.71 and Ec=0.01 

 

 
Figure 4: Temperature profile for various value of Hartmann number 𝑯𝒂 when λ=2.0, 

Pr=0.71 and Ec=0.01 

Conclusion 

In this study, a mathematical model has been presented for the boundary layer flow and heat transfer over 

a stretching surface in the presence of magnetic field.  

We notice from the figure 1 (when λ=0.1<1.0), velocity boundary layer thickness decreases with 

increases in Hartmann number 𝐻𝑎 , whereas opposite phenomenon occurs in figure 2, when λ=2.0>1.0. 

Thus we conclude that we can control the velocity field by introducing magnetic field. 

On the other hand, the temperature profiles for various values of Hartmann number ( 𝐻𝑎) for velocity 

parameter (𝜆) 0.1 and 2.0, fixed values of Prandtl number (Pr) and Eckert number (Ec) are plotted against 

Ha = 2, 1, 0.5, 0. 

 

Ha = 2, 1, 0.5, 0. 
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the similarity variable in figures 3 and 4. It is observed from the figures that the thermal boundary layer 

thickness increases with increases in Hartmann number 𝐻𝑎 .        
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