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ABSTRACT 

In this note, entries of infinite matrices, sequences and series are real or complex numbers.  We prove two 

results which are the versions for series of well-known theorems by Maddox (1970a) and Buck (1943) for 

sequences. 
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INTRODUCTION 

Throughout this short note, entries of infinite matrices, sequences and series are real or complex numbers.  

To make the note self-contained, we recall the following.  Given an infinite matrix A  (ank), n, k = 1, 2, 
... and a sequence x = {xk}, k = 1, 2, ..., by the A-transform of x = {xk}, we mean the sequence A(x) = 

{(Ax)n}, 

1,2,...,n,xa(Ax)
1k

knkn 




 

where we suppose that the series on the right converge.  If ,(Ax)lim n
n




 we say that  

x = {xk} is summable A or A-summable to ℓ.   

 

If X, Y are sequence spaces, we write A  (X, Y) if {(Ax)n}  Y, whenever  

x = {xk}  X.  We make use of the following sequence spaces: 
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If A  (c, c), we say that A is conservative.  If A  (c, c) and ,xlim(Ax)lim k
k

n
n 

  x = {xk}  c, we say 

that A is regular. The set of all regular matrices is denoted by (c, c; P), P denoting “preservation of limit”.  

 

The following result, which gives a characterization of a conservative and a regular matrix in terms of its 

entries, is well-known (see, for instance, (Hardy, 1949), (Maddox, 1970b)). 

 

Theorem 1.1. A  (ank) is conservative if and only if 

 ;asup
1k

nk
1n



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         (1.1) 

 

 1,2,...;k,δalim knk
n




        (1.2) 
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and 

 δ.alim
1k

nk
n





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        (1.3) 

Further, A is regular if and only if (1.1), (1.2), (1.3) hold with k = 0, k = 1, 2, ... and  = 1.  

We write A  (, ; P) if A  (, ) and ,x(Ax)
1k

k

1n

n 








  x = {xk}  . 

 

The following results are due to Maddox 1967. 

 

Theorem 1.2. A  (ank)  (, ) if and only if 

 

 n;in uniformly  converges  Δg
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and 

 1,2,...,n0,glim nk
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        (1.6) 

 

where  gnk = gnk  gn,k+1, . 1,2,...kn,,ag
n

1r

rknk 


 

 

Theorem 1.3. (, ; P)  (, ) = . 

 

RESULTS AND DISCUSSION 

Maddox 1970a proved that A  (ℓ, c) if and only if there exists a sequence x = {xk}  ℓ \ c such that A 
sums every subsequence of x.  It is easily deduced from this result that a bounded sequence x = {xk} is 

convergent if and only if there exists a matrix A  (c, c; P) which sums every subsequence of x (see 

(Buck, 1943)).  We now prove a characterization of the matrix class (, ) similar to Maddox’s.  We then 

deduce a characterization of sequences in  among sequences in  similar to Buck’s. 

 

Theorem 2.1. (Maddox type). Let A  (ank) be such that 0,alim nk
k




 n = 1, 2, ... . Then A  (, ) if and 

only if there exists a sequence x = {xk}   \  such that every subsequence of s = {sk} is summable B, 

where B  ( gnk), ,xs
k

1i

ik 


  k = 1, 2, ... . 

Proof. Necessity. Let A  (, ) and bnk =  gnk, n, k = 1, 2, ... .  Using Theorem 1.2, 


1k

nkb  converges 

uniformly in n and ,αα)g(glimblim 1kk1nknk
n

nk
n




  k = 1, 2, ... .  So B  (ℓ, c)  (see (Maddox, 

1970b), p. 169, Theorem 6).  If x = {xk}   \ , then s = {sk}  ℓ \ c so that B sums every subsequence 
of x. 
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Sufficiency. Let there exist a sequence x = {xk}   \  such that every subsequence of s = {sk} is 

summable B.  Now s = {sk}  ℓ \ c.  By the result due to Maddox stated in the beginning of this section, 

B  (ℓ, c).  Let p = {pk}  , ,pq
k

1i

ik 


  k = 1, 2, ... .  So q = {qk}  ℓ. For m = 1, 2, ..., 

0)q (where)q(qapa 0
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Since B  (ℓ, c) and q = {qk}  ℓ, 
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converges, n = 1, 2, ... .  Since {qk}  ℓ and 0,alim nm
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 n = 1, 2, ..., 0,qalim mnm
m
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n = 1, 2, ... .  Taking limit as m   in (2.1), we note that 


1k
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Since B  (ℓ, c) and {qk}  ℓ, c,qb
1n1k

knk 
















  i.e., {tn}  c, which implies that  

{yn}  .  In other words, A  (, ), completing the proof of the theorem.                  □ 

 
Using Theorem 2.1, we now deduce a Buck type result. 

 

Theorem 2.2. (Buck type). A  sequence x = {xk} is in  if and only if there exists a matrix A  (ank)  

(, ; P) with 0,alim nk
k




 n = 1, 2, ... such that B sums every subsequence of s = {sk}. 

 

Proof. Sufficiency.  Suppose there exists A  (, ; P) with 0,alim nk
k




 n = 1, 2, ... such that B sums 

every subsequence of s = {sk}.  We claim that x  . Suppose not.  Then x   \  such that B sums every 

subsequence of s.  In view of Theorem 2.1, A  (, ), which contradicts Theorem 1.3.  Thus x  . 
 

Necessity.  Let x  .  Then s  c.  Let A  (, ; P) with 0,alim nk
k


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 n = 1, 2, ....  Let {tk}  c.  Define 

yk = tk  tk1, k = 1, 2, ..., where t0 = 0.  Then {yk}   and so, by hypothesis, 
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Let n be a positive integer.  For r = 1, 2, ..., 
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Since A  (, ; P), 


1j

jrjya  converges, r = 1, 2, ... .  Since 0alim nr
n
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 and {tn}  c, it follows that 
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  So taking limit as n   in (2.2), we see that 
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   Thus B  (c, c) and consequently B sums every subsequence  

of s.  This completes the proof of the theorem.                       □ 

 

Remark 2.3. Note that Theorem 2.1 and 2.2 hold for lower triangular matrices, i.e., for matrices (ank) for 
which ank = 0, k > n, n, k = 1, 2, ... . 
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