Research Article

A MADDOX TYPE AND A BUCK TYPE THEOREMS

P. N. Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India *pinnangudinatarajan@gmail.com

ABSTRACT

In this note, entries of infinite matrices, sequences and series are real or complex numbers. We prove two results which are the versions for series of well-known theorems by Maddox (1970a) and Buck (1943) for sequences.

2000 Mathematics Subject Classification: 40, 46.

Keywords: Regular Matrix, Maddox Type Theorem, Buck Type Theorem, Lower Triangular Matrix

INTRODUCTION

Throughout this short note, entries of infinite matrices, sequences and series are real or complex numbers. To make the note self-contained, we recall the following. Given an infinite matrix $A = (a_{nk})$, n, k = 1, 2, ... and a sequence $x = \{x_k\}$, k = 1, 2, ..., by the A-transform of $x = \{x_k\}$, we mean the sequence $A(x) = \{(Ax)_n\}$,

$$(Ax)_n = \sum_{k=1}^{\infty} a_{nk} x_k, \quad n = 1, 2, ...,$$

where we suppose that the series on the right converge. If $\lim_{n\to\infty} (Ax)_n = \ell$, we say that $x = \{x_k\}$ is summable A or A-summable to ℓ .

If X, Y are sequence spaces, we write $A \in (X, Y)$ if $\{(Ax)_n\} \in Y$, whenever $x = \{x_k\} \in X$. We make use of the following sequence spaces:

$$\begin{split} \ell_{\infty} &= \{x = \{x_k\} : \sup_{k \ge 1} \left| x_k \right| < \infty \}; \\ c &= \{x = \{x_k\} : \lim_{k \to \infty} x_k = \ell, \text{ for some } \ell \}; \\ \gamma_{\infty} &= \{x = \{x_k\} : s = \{s_k\} \in \ell_{\infty}, s_k = \sum_{i=1}^k x_i, \quad k = 1, 2, \dots \}; \\ \gamma &= \{x = \{x_k\} : s = \{s_k\} \in c \}. \end{split}$$

If $A \in (c, c)$, we say that A is conservative. If $A \in (c, c)$ and $\lim_{n \to \infty} (Ax)_n = \lim_{k \to \infty} x_k$, $x = \{x_k\} \in c$, we say that A is regular. The set of all regular matrices is denoted by (c, c; P), P denoting "preservation of limit".

The following result, which gives a characterization of a conservative and a regular matrix in terms of its entries, is well-known (see, for instance, (Hardy, 1949), (Maddox, 1970b)).

Theorem 1.1. $A \equiv (a_{nk})$ is conservative if and only if

$$\sup_{n\geq 1} \sum_{k=1}^{\infty} |a_{nk}| < \infty; \tag{1.1}$$

$$\lim_{n \to \infty} a_{nk} = \delta_k, \quad k = 1, 2, ...;$$
 (1.2)

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 183-187/Natarajan

Research Article

and

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} = \delta. \tag{1.3}$$

Further, A is regular if and only if (1.1), (1.2), (1.3) hold with $\delta_k = 0$, k = 1, 2, ... and $\delta = 1$.

We write
$$A \in (\gamma, \gamma; P)$$
 if $A \in (\gamma, \gamma)$ and $\sum_{n=1}^{\infty} (Ax)_n = \sum_{k=1}^{\infty} x_k$, $x = \{x_k\} \in \gamma$.

The following results are due to Maddox 1967.

Theorem 1.2. $A \equiv (a_{nk}) \in (\gamma_{\infty}, \gamma)$ if and only if

$$\sum_{k=1}^{\infty} |\Delta g_{nk}| \text{ converges uniformly in n;}$$
 (1.4)

$$\sum_{r=1}^{\infty} a_{rk} = \alpha_k, \quad k = 1, 2, ...;$$
 (1.5)

and

$$\lim_{k \to \infty} g_{nk} = 0, \quad n = 1, 2, ..., \tag{1.6}$$

where
$$\Delta \ g_{nk} = g_{nk} - g_{n,k+1}, \ g_{nk} = \sum_{r=1}^n a_{rk} \,, \quad n,k=1,2,....$$

Theorem 1.3. $(\gamma, \gamma; P) \cap (\gamma_{\infty}, \gamma) = \emptyset$.

RESULTS AND DISCUSSION

Maddox 1970a proved that $A \in (\ell_{\infty}, c)$ if and only if there exists a sequence $x = \{x_k\} \in \ell_{\infty} \setminus c$ such that A sums every subsequence of x. It is easily deduced from this result that a bounded sequence $x = \{x_k\}$ is convergent if and only if there exists a matrix $A \in (c, c; P)$ which sums every subsequence of x (see (Buck, 1943)). We now prove a characterization of the matrix class $(\gamma_{\infty}, \gamma)$ similar to Maddox's. We then deduce a characterization of sequences in γ among sequences in γ similar to Buck's.

Theorem 2.1. (Maddox type). Let $A \equiv (a_{nk})$ be such that $\lim_{k \to \infty} a_{nk} = 0$, n = 1, 2, Then $A \in (\gamma_{\infty}, \gamma)$ if and only if there exists a sequence $x = \{x_k\} \in \gamma_{\infty} \setminus \gamma$ such that every subsequence of $s = \{s_k\}$ is summable B, where $B \equiv (\Delta g_{nk})$, $s_k = \sum_{i=1}^k x_i$, k = 1, 2,

Proof. Necessity. Let $A \in (\gamma_{\infty}, \gamma)$ and $b_{nk} = \Delta \ g_{nk}, \ n, \ k = 1, 2, \dots$. Using Theorem 1.2, $\sum_{k=1}^{\infty} \left| b_{nk} \right|$ converges uniformly in n and $\lim_{n \to \infty} b_{nk} = \lim_{n \to \infty} \left(g_{nk} - g_{nk+1} \right) = \alpha_k - \alpha_{k+1}, \ k = 1, 2, \dots$. So $B \in (\ell_{\infty}, c)$ (see (Maddox, 1970b), p. 169, Theorem 6). If $x = \{x_k\} \in \gamma_{\infty} \setminus \gamma$, then $s = \{s_k\} \in \ell_{\infty} \setminus c$ so that B sums every subsequence of x.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 183-187/Natarajan

Research Article

Sufficiency. Let there exist a sequence $x = \{x_k\} \in \gamma_\infty \setminus \gamma$ such that every subsequence of $s = \{s_k\}$ is summable B. Now $s = \{s_k\} \in \ell_\infty \setminus c$. By the result due to Maddox stated in the beginning of this section,

$$B \in (\ell_{\infty}, c). \text{ Let } p = \{p_k\} \in \gamma_{\infty}, \ q_k = \sum_{i=1}^k p_i, \ k = 1, 2, \dots. \text{ So } q = \{q_k\} \in \ell_{\infty}. \text{ For } m = 1, 2, \dots, m$$

$$\sum_{k=1}^{m} a_{nk} p_{k} = \sum_{k=1}^{m} a_{nk} (q_{k} - q_{k-1}) \quad \text{(where } q_{0} = 0)$$

$$= a_{nm} q_{m} + \sum_{k=1}^{m-1} (a_{nk} - a_{n,k+1}) q_{k}. \tag{2.1}$$

Since $B \in (\ell_{\infty}, c)$ and $q = \{q_k\} \in \ell_{\infty}$,

$$\sum_{k=1}^{\infty} (b_{nk} - b_{n-1,k}) q_k$$

converges, $n = 1, 2, \dots$ Now,

$$\begin{aligned} b_{nk} - b_{n-1,k} &= \Delta g_{nk} - \Delta g_{n-1,k} \\ &= (g_{nk} - g_{n,k+1}) - (g_{n-1,k} - g_{n-1,k+1}) \\ &= (g_{nk} - g_{n-1,k}) - (g_{n,k+1} - g_{n-1,k+1}) \\ &= a_{nk} - a_{n,k+1}. \end{aligned}$$

So

$$\sum_{k=1}^{\infty} (a_{nk} - a_{n,k+1}) q_k$$

 $\text{converges, } n = 1, \ 2, \ ... \ . \ \ \text{Since} \ \{q_k\} \ \in \ \ell_\infty \ \ \text{and} \ \ \lim_{m \to \infty} a_{nm} = 0, \ \ n = 1, \ 2, \ ..., \ \ \lim_{m \to \infty} a_{nm} q_m = 0,$

 $n=1,\,2,\,\dots$. Taking limit as $m\to\infty$ in (2.1), we note that $\sum_{k=1}^\infty a_{nk}p_k$ converges and

$$y_n = \sum_{k=1}^{\infty} a_{nk} p_k = \sum_{k=1}^{\infty} (a_{nk} - a_{n,k+1}) q_k, \quad n = 1, 2, \dots.$$

Now.

$$\begin{split} \sum_{k=1}^{\infty} b_{nk} q_k &= \sum_{k=1}^{\infty} (g_{nk} - g_{n,k+1}) q_k \\ &= \sum_{k=1}^{\infty} \left(\sum_{r=1}^{n} (a_{rk} - a_{r,k+1}) \right) q_k \\ &= \sum_{r=1}^{n} \left(\sum_{k=1}^{\infty} (a_{rk} - a_{r,k+1}) q_k \right) \\ &= \sum_{r=1}^{n} y_r \\ &= t_n. \end{split}$$

Research Article

Since $B \in (\ell_\infty, \ c)$ and $\{q_k\} \in \ell_\infty$, $\left\{\sum_{k=1}^\infty b_{nk} q_k\right\}_{n=1}^\infty \in c$, i.e., $\{t_n\} \in c$, which implies that $\{y_n\} \in \gamma$. In other words, $A \in (\gamma_\infty, \gamma)$, completing the proof of the theorem.

Using Theorem 2.1, we now deduce a Buck type result.

Theorem 2.2. (Buck type). A γ_{∞} sequence $x = \{x_k\}$ is in γ if and only if there exists a matrix $A \equiv (a_{nk}) \in (\gamma, \gamma; P)$ with $\lim_{k \to \infty} a_{nk} = 0$, n = 1, 2, ... such that B sums every subsequence of $s = \{s_k\}$.

Proof. Sufficiency. Suppose there exists $A \in (\gamma, \gamma; P)$ with $\lim_{k \to \infty} a_{nk} = 0$, n = 1, 2, ... such that B sums every subsequence of $s = \{s_k\}$. We claim that $x \in \gamma$. Suppose not. Then $x \in \gamma_\infty \setminus \gamma$ such that B sums every subsequence of s. In view of Theorem 2.1, $A \in (\gamma_\infty, \gamma)$, which contradicts Theorem 1.3. Thus $x \in \gamma$.

Necessity. Let $x \in \gamma$. Then $s \in c$. Let $A \in (\gamma, \gamma; P)$ with $\lim_{k \to \infty} a_{nk} = 0$, n = 1, 2, Let $\{t_k\} \in c$. Define $y_k = t_k - t_{k-1}$, k = 1, 2, ..., where $t_0 = 0$. Then $\{y_k\} \in \gamma$ and so, by hypothesis,

$$\left\{\sum_{k=l}^{\infty}a_{nk}y_{k}\right\}_{n=l}^{\infty}\in\gamma.$$

Let n be a positive integer. For r = 1, 2, ...,

$$\begin{split} \sum_{k=1}^{n} (a_{rk} - a_{r,k+1}) t_k &= \sum_{k=1}^{n} (a_{rk} - a_{r,k+1}) \left(\sum_{j=1}^{k} y_j \right) \\ &= \sum_{j=1}^{n} \left(\sum_{k=j}^{n} (a_{rk} - a_{r,k+1}) \right) y_j \\ &= \sum_{j=1}^{n} a_{rj} y_j - a_{r,n+1} \sum_{j=1}^{n} y_j \\ &= \sum_{i=1}^{n} a_{rj} y_j - a_{r,n+1} t_n. \end{split}$$
 (2.2)

Since $A \in (\gamma, \gamma; P)$, $\sum_{j=1}^{\infty} a_{rj} y_j$ converges, r=1, 2, Since $\lim_{n \to \infty} a_{rn} = 0$ and $\{t_n\} \in c$, it follows that

 $\lim_{n\to\infty} a_{r,n+1}t_n = 0$. So taking limit as $n\to\infty$ in (2.2), we see that

$$\sum_{k=1}^{\infty} (a_{rk} - a_{r,k+1}) t_k$$

converges, r = 1, 2, ... and

$$\sum_{k=1}^{\infty} (a_{rk} - a_{r,k+1}) t_k = \sum_{j=1}^{\infty} a_{rj} y_j,$$

r = 1, 2, ...

Now,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 183-187/Natarajan

Research Article

$$\begin{split} \sum_{k=l}^{\infty} b_{nk} t_k &= \sum_{k=l}^{\infty} (g_{nk} - g_{n,k+l}) t_k \\ &= \sum_{k=l}^{\infty} \Biggl(\sum_{r=l}^{n} (a_{rk} - a_{r,k+l}) \Biggr) t_k \\ &= \sum_{r=l}^{n} \Biggl(\sum_{k=l}^{\infty} (a_{rk} - a_{r,k+l}) t_k \Biggr) \\ &= \sum_{r=l}^{n} \Biggl(\sum_{j=l}^{\infty} a_{rj} y_j \Biggr). \end{split}$$

So

$$\sum_{k=1}^{\infty} b_{nk} t_k = \sum_{r=1}^{n} \left(\sum_{k=1}^{\infty} a_{rk} y_k \right) \in c,$$

since $\left\{\sum_{k=1}^{\infty}a_{nk}y_k\right\}_{n=1}^{\infty}\in\gamma$. Thus $B\in(c,c)$ and consequently B sums every subsequence

of s. This completes the proof of the theorem.

Remark 2.3. Note that Theorem 2.1 and 2.2 hold for lower triangular matrices, i.e., for matrices (a_{nk}) for which $a_{nk} = 0$, k > n, n, k = 1, 2, ...

REFERENCES

Buck RC (1943). A note on subsequences. *Bulletin of the American Mathematical Society* 49 898–899. **Hardy GH** (1949). *Divergent Series* (Oxford University Press).

Maddox IJ (1967). On theorems of Steinhaus type. *Journal of the London Mathematical Society* 42 239–244.

Maddox IJ (1970a). A Tauberian theorem for subsequences. *Bulletin of the London Mathematical Society* 2 63–65.

Maddox IJ (1970b). Elements of Functional Analysis (Cambridge University Press).