Research Article

NATURE OF GENERALIZED ALGEBRAIC STRUCTURE

$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4 / a_i \in F \& G_i \in C(P)\}$$

*Manohar Durge

ANC, Anandwan Warora *Author for Correspondence

ABSTRACT

This is my sincere efforts towards realization of Unchanging Truth. This work is dedicated to my spiritual teacher Sri SriRamakrishana. In the Present work first I proved that (A, +, .) is a non abelian ring. Second I proved that (A, +, *) is a Commutative ring with unity,

Where A = $\{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4 / a_i \in F \& G_i \in C(P)\}$ and C(P)= Class of Algebraic Structure.

Keywords: Binary Operation, Abelian Group, Semigroup, Ring, Field

INTRODUCTION

Herstein cotes in 1992

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

1 a, b \in G implies that a*b \in G

2 a, b, c \in G implies that (a*b)*c = a*(b*c)

3 There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$

4 For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every a, $b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set R is said to be an associative ring if in R there are defined two operations, defined by + and * respectively, such that for all a,b,c in R:

1 a+b is in R.

2 a+b = b+a.

3(a+b)+c = a+(b+c).

4 There is an element 0 in R such that $a+0 = a, \forall a \in R$

5 There exist an element -a in R such that a + (-a) = 0.

6 a*b is in R

7 a*(b*c) = (a*b)*c.

$$8 a * (b+c) = a * b + a * c$$
and $(b+c) * a = b*a + c*a.$

It may very well happen, or not happen, that there is an element 1 in R such that a*1 = 1*a = a for every a in R; if there is such we shall describe R as a ring with unit element.

If the multiplication of R is such that a*b = b*a for every a, b in R, then we call R a commutative ring.

DISCUSSION

Let
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4 / a_i \in F \& G_i \in C(P)\}$$

Where $C(P) = \text{Class of Algebraic Structure, and}$
Let $x = a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4$, $a_i \in F$
 $y = b_0G_0 + b_1G_1 + b_2G_2 + b_3G_3 + b_4G_4$, $b_i \in F$
 $z = c_0G_0 + c_1G_1 + c_2G_2 + c_3G_3 + c_4G_4$, $c_i \in F$
 $-x = (-a_0)G_0 + (-a_1)G_1 + (-a_2)G_2 + (-a_3)G_3 + (-a_4)G_4$
 $O = 0G_0 + 0G_1 + 0G_2 + 0G_3 + 0G_4$
 $G_0 = 1G_0 + 0G_1 + 0G_2 + 0G_3 + 0G_4$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 180-182/Durge

Research Article

$$cx = (ca_0)G_0 + (ca_1)G_1 + (ca_2)G_2 + (ca_3)G_3 + (ca_4)G_4$$
, $c \in F$

Now we define first binary operation + on A as

$$x + y = (a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4) + (b_0G_0 + b_1G_1 + b_2G_2 + b_3G_3 + b_4G_4)$$

$$= (a_0 + b_0)G_0 + (a_1 + b_1)G_1 + (a_2 + b_2)G_2 + (a_3 + b_3)G_3 + (a_4 + b_4)G_4$$
.....(1)

$$=> x + y = y + x, \forall x, y, \in A x + (y + z) = (x + y) + z, \quad \forall x, y, z \in A 0 + x = x + 0, \quad \forall x \in A$$

$$x + (-x) = (-x) + x = 0, \forall x \in A$$

 \Rightarrow (A,+) is an abelian group.(2)

Case 1:

Now we define Second binary operation.onA as

$$x.y = (a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4).(b_0G_0 + b_1G_1 + b_2G_2 + b_3G_3 + b_4G_4)$$

$$x.y = (a_0 + a_1 + a_2 + a_3 + a_4)y, \forall x, y \in A \dots (3)$$

$$=> x.(y.z) = (x.y).z, \forall x, y, z \in A$$

& $x. y \neq y. x, \forall x, y \in A$

Hence (A,.) is a non-commutative semi group.

Also

$$(x + y).z = x.z + y.z \forall x, y, z \in A$$

 $x.(y + z) = x.y + x.z \forall x, y, z \in A$

And (A, +, .) is a non-commutative ring. (4)

Case 2:

Now we define Second binary operation * on A as

$$x * y = (a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4) * (b_0G_0 + b_1G_1 + b_2G_2 + b_3G_3 + b_4G_4)$$

$$= (a_0b_0 + a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1) G_0$$

$$+ (a_0b_1 + a_1b_0 + a_2b_4 + a_3b_3 + a_4b_2)G_1$$

$$+ (a_0b_2 + a_1b_1 + a_2b_0 + a_3b_4 + a_4b_3) G_2$$

$$+ (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 + a_4b_4) G_3$$

$$=> x * y = y * x, \forall x, y \in A$$

$$=> x * (y * z) = (x * y) * z, \forall x, y, z \in A$$

$$G_0 * x = x * G_0 = x, \forall x \in A$$

Let $x^{-1} = (b_0 G_0 + b_1 G_1 + b_2 G_2 + b_3 G_3 + b_4 G_4)$ be the inverse of any x in A Where $x = (a_0 G_0 + a_1 G_1 + a_2 G_2 + a_3 G_3 + a_4 G_4)$

∴By definition one obtains

$$a_0b_0 + a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1 = 1$$
(6)

$$a_0b_1 + a_1b_0 + a_2b_4 + a_3b_3 + a_4b_2 = 0$$
(7)

$$a_0b_2 + a_1b_1 + a_2b_0 + a_3b_4 + a_4b_3 = 0$$
(8)

$$a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 + a_4b_4 = 0$$
(9)

$$a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1 + a_4b_0 = 0$$
(10)

Rewriting eq n (7), (8), (9), (10)

$$a_1b_0 + a_0b_1 + a_4b_2 + a_3b_3 + a_2b_4 = 0$$
(11)

$$a_2 b_0 + a_1 b_1 + a_0 b_2 + a_4 b_3 + a_3 b_4 = 0$$
(12)

$$a_3 b_0 + a_2 b_1 + a_1 b_2 + a_0 b_3 + a_4 b_4 = 0$$
(13)

$$a_4 b_0 + a_3 b_1 + a_2 b_2 + a_1 b_3 + a_0 b_4 = 0$$
(14)

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 180-182/Durge

Research Article

solving eq^n (11), (12), (13) &(14) one obtains

$$\frac{b_0}{F_0} = \frac{-b_1}{F_1} = \frac{b_2}{F_2} = \frac{-b_3}{F_3} = \frac{b_4}{F_4} = k$$

Where;

January-March, pp. 180-182/Durge

ticle

1), (12), (13) &(14) one obtains
$$\frac{b_0}{F_0} = \frac{-b_1}{F_1} = \frac{b_2}{F_2} = \frac{-b_3}{F_3} = \frac{b_4}{F_4} = k$$

$$F_0 = \begin{vmatrix} a_0 & a_4 & a_3 & a_2 \\ a_1 & a_0 & a_4 & a_3 \\ a_2 & a_1 & a_0 & a_4 \\ a_3 & a_2 & a_1 & a_0 \end{vmatrix}$$

$$\frac{a_3}{a_4} = \frac{a_2}{a_3}$$

$$F_1 = \begin{vmatrix} a_1 & a_4 & a_3 & a_2 \\ a_2 & a_0 & a_4 & a_3 \\ a_3 & a_1 & a_0 & a_4 \\ a_4 & a_2 & a_1 & a_0 \end{vmatrix}$$

$$F_2 = \begin{vmatrix} a_1 & a_0 & a_3 & a_2 \\ a_2 & a_1 & a_4 & a_3 \\ a_3 & a_2 & a_0 & a_4 \\ a_4 & a_3 & a_1 & a_0 \end{vmatrix}$$

$$F_3 = \begin{vmatrix} a_1 & a_0 & a_4 & a_2 \\ a_2 & a_1 & a_0 & a_3 \\ a_3 & a_2 & a_1 & a_4 \\ a_4 & a_3 & a_2 & a_0 \end{vmatrix}$$

$$F_4 = \begin{vmatrix} a_1 & a_0 & a_4 & a_3 \\ a_2 & a_1 & a_0 & a_4 \\ a_3 & a_2 & a_1 & a_0 \\ a_4 & a_3 & a_2 & a_1 \end{vmatrix}$$

$$=> b_0 = kF_0 \dots (15)$$

$$b_1 = -kF_1$$
(16)

$$b_2 = kF_2 \dots (17)$$

$$b_3 = -kF_3....(18)$$

$$b_4 = kF_4....(19)$$

 $b_4 = kF_4$(19) From eq^n (6), (15), (16), (17), (18), (19) one obtains

$$k = \frac{1}{a_0 F_0 - a_1 F_1 + a_2 F_2 - a_3 F_3 + a_4 F_4} = \infty \text{ if } a_0 = a_1 = a_2 = a_3 = 0 \& a_4 \neq 0$$

Inverse of each of the element in A is not exist \Rightarrow

 \Rightarrow (A, +, *) Is a Commutative ring with unity,

Where A =
$$\{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4 / a_i \in F \& G_i \in C(P)\}$$

Where C(P)= Class of Algebraic Structure, and

Conclusion

From the above discussion, I come to the following conclusions

first I proved that (A, +, ...) is a non commutative ring. Second I proved that (A, +, *) Is a Commutative ring with unity.

Where
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 + a_4G_4 / a_i \in F \& G_i \in C(P)\}$$

and C(P)= Class of Algebraic Structure,

REFERENCES

Herstein IN (1992). Topics in Algebra 2nd edition (Wiley Eastern Limited) 26-256. ISBN: 0 85226 354 6.