Research Article

NATURE OF GENERALIZED ALGEBRAIC STRUCTURE $A = \{a_0G_0 + a_1G_1 + a_2G_2 / a_i \in F\&G_i \in C(P) = \text{ class of algebraic structure}\}$

*Manohar Durge

ANC, Anandwan Warora *Author for Correspondence

ABSTRACT

This is my sincere efforts towards realization of Unchanging Truth. This work is dedicated to my spiritual teacher Sri Sri Ramakrishana. In the Present work first I proved that (A, +, .) is a non abelian ring. Second I proved (A, +, *) is a commutative ring with unity. Third I proved (A, +, @) is a commutative ring with unity, where $A = \{a_0G_0 + a_1G_1 + a_2G_2 / a_i \in F \& G_i \in C(P)\}$ and C(P)=Class of algebraic Structure, where $A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 / a_i \in F \& G_i \in C(P)\}$, and C(P) = Class of algebraic Structure.

Keywords: Binary Operation, Abelian Group, Ring, Field, Class of Algebraic Structure

INTRODUCTION

Herstein cotes in 1992

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

1 a, b \in G implies that a*b \in G

2 a, b, c \in G implies that (a*b)*c = a*(b*c)

3 There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$

4 For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every $a, b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set R is said to be an associative ring if in R there are defined two operations, defined by + and * respectively, such that for all a,b,c in R:

1 a+b is in R.

2 a+b = b+a.

3(a+b)+c = a+(b+c).

4 There is an element 0 in R such that $a+0 = a, \forall a \in R$

5 There exist an element -a in R such that a + (-a) = 0.

6 a*b is in R

7 a*(b*c) = (a*b)*c.

8 a * (b+c) = a * b + a * cand (b+c) * a = b*a + c*a.

It may very well happen, or not happen, that there is an element 1 in R such that a*1 = 1*a = a for every a in R; if there is such we shall describe R as a ring with unit element.

If the multiplication of R is such that a*b = b*a for every a, b in R, then we call R a commutative ring.

DISCUSSION

Let
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 / a_i \in F\& G_i \in C(P) = \text{class of algebraic structure}\}$$

And $\mathbf{x} = a_0G_0 + a_1G_1 + a_2G_2; a_i \in F$
 $y = b_0G_0 + b_1G_1 + b_2G_2; b_i \in F$
 $z = c_0G_0 + c_1G_1 + c_2G_2; c_i \in F$
 $G_0 = 1G_0 + 0G_1 + 0G_2, 1 \in F$
 $0 = 0G_0 + 0G_1 + 0G_2, 0 \in F$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 149-152/Durge

Research Article

$$-x = (-a_0)G_0 + (-a_1)G_1 + (-a_2)G_2$$

$$x = (ca_0)G_0 + (ca_1)G_1 + (ca_2)G_2$$

$$cx = (ca_0)G_0 + (ca_1)G_1 + (ca_2)G_2, c \in F$$
 Here first binary operation + on A defined as
$$x + y = (a_0G_0 + a_1G_1 + a_2G_2) + (b_0G_0 + b_1G_1 + b_2G_2)$$

$$= (a_0 + b_0)G_0 + (a_1 + b_1)G_1 + (a_2 + b_2)G_2 \dots (1)$$

$$= > x + y = y + x, \forall x, y, \in A$$

$$x + (y + z) = (x + y) + z, \forall x, y, z \in A$$

$$0 + x = x + 0 = x, \forall x \in A$$

$$x + (-x) = (-x) + x = 0, \forall x \in A$$

$$= > (A, +) \text{is an abelian group}.$$

.....(2)

Case 1:

Second binary operation.onA defined as

$$x. y = (a_0G_0 + a_1G_1 + a_2G_2). (b_0G_0 + b_1G_1 + b_2G_2)$$

= $(a_0 + a_1 + a_2)y.............(3)$
 $x. y \neq y. x, \forall x, y, z \in A$

$$x.(y.z) = (x.y).z, \forall x, y, z \in A$$

Hence (A,.) is a non-abelian semi group. (4)

Also

Case 2:

Second binary operation * on A defined as

$$x * y = (a_0G_0 + a_1G_1 + a_2G_2) * (b_0G_0 + b_1G_1 + b_2G_2)$$

= $(a_0b_0 + a_1b_2 + a_2b_1)G_0 + (a_0b_1 + a_1b_0 + a_2b_2)G_1 + (a_0b_2 + a_1b_1 + a_2b_0)G_2$
.....(6)

$$= > x * y = y * x, \forall x, y \in A$$

 $x * (y * z) = (x * y) * z, \forall x, y, z \in A$

$$G_0 * x = x * G_0 = G_0, \forall x, y \in A$$

Let
$$x^{-1} = b_0 G_0 + b_1 G_1 + b_2 G_2$$
 be the inverse of $x = a_0 G_0 + a_1 G_1 + a_2 G_2$
= $> x * x^{-1} = x^{-1} * x = G_0 = 1G_0 + 0G_1 + 0G_2$

$$(a_0b_0 + a_1b_2 + a_2b_1)G_0 + (a_0b_1 + a_1b_0 + a_2b_2)G_1 + (a_0b_2 + a_1b_1 + a_2b_0)G_2 = 1G_0 + 0G_1 + 0G_2$$

Hence

$$a_0b_0 + a_1b_2 + a_2b_1 = 1$$
(7)
 $a_0b_1 + a_1b_0 + a_2b_2 = 0$ (8)
 $a_0b_2 + a_1b_1 + a_2b_0 = 0$ (9)

Rewriting equation (8) & (9)

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 149-152/Durge

Research Article

$$\Rightarrow$$
 $b_0 = k(a_0^2 - a_1 a_2) \dots (12)$

$$b_1 = -k(a_1a_0 - a_2^2).....(13)$$

$$b_2 = k(a_1^2 - a_0 a_2)....$$
 (14)
Hence

$$k = \frac{1}{4} \left\{ a_0^3 + a_1^3 + a_2^3 - 3a_0 a_1 a_2 \right\} = \infty if a_0 + a_1 + a_2 = 0$$

 $=> x^{-1}$ does not exist for each of the element in A.

=> (A,*) is a commutative monoid.

=> (A, +, *) is a commutative ring with unity. (15)

Case: 3

Second binary operation @ on A defined as

$$x@y = (a_0G_0 + a_1G_1 + a_2G_2)@(b_0G_0 + b_1G_1 + b_2G_2)$$

$$= (a_0b_0)G_0 + [a_1b_0 + (a_1 + a_2)b_1 + a_1b_2]G_1$$

$$+ [a_2b_0 + a_1b_1 + (a_0 + a_2)b_2]G_2 \dots (16)$$

$$x@y = y@x, \forall x, y \in A$$

$$x@(y@z) = (x@y)@z \forall x, y, z \in A$$

$$x@G_0 = G_0@x = x, \forall x \in A$$

Let $x^{-1} = b_0G_0 + b_1G_1 + b_2G_2$ be the inverse of

$$x = a_0 G_0 + a_1 G_1 + a_2 G_2 \text{in A}.$$

∴ By definition

$$x@x^{-1} = x^{-1}@x = G_0 = 1G_0 + 0G_1 + 0G_2$$

$$a_0.b_0=1$$
(17)

$$a_0b_0 + (a_1 + a_2)b_1 + a_1b_2 = 0 \dots (18)$$

$$a_2b_0 + a_1b_1 + (a_0 + a_2)b_2 = 0 \dots (19)$$

Solving eqⁿ (18) & (19) for b_0 , b_1 & b_2 one obtains

$$\frac{b_0}{\begin{vmatrix} (a_1+a_2) & a_1 \\ a_1 & a_0+a_2 \end{vmatrix}} = \frac{-b_1}{\begin{vmatrix} a_1 & a_1 \\ a_2 & (a_0+a_2) \end{vmatrix}} = \frac{b_2}{\begin{vmatrix} a_1 & (a_1+a_2) \\ a_2 & a_1 \end{vmatrix}} = k$$

$$b_0 = k\{(a_1 + a_2)(a_0 + a_2) - a_1^2\} \dots (20)$$

$$b_1 = -ka_0a_1$$
(21)

$$b_1 = -ka_0a_1 \dots (21)$$

$$b_2 = k\{a_1^2 - a_2^2 - a_1a_2\} \dots (22)$$

$$k = \frac{1}{a_0} \{a_0 a_1 + a_1 a_2 + a_0 a_2 + a_2^2 - a_1^2\}$$
 (23)
Substituting the values of k from (23) in equation (21) & (22) one obtains

$$b_{1} = \frac{-a_{1}}{a_{0}a_{1} + a_{1}a_{2} + a_{0}a_{2} + a_{2}^{2} - a_{1}^{2}} \dots (24)$$

$$b_{2} = \frac{\{a_{1}^{2} - a_{2}^{2} - a_{1}a_{2}\}}{a_{0}\{a_{0}a_{1} + a_{1}a_{2} + a_{0}a_{2} + a_{2}^{2} - a_{1}^{2}\}}$$

Substituting the values of b_0 , $b_1 \& b_2$ in LHS of equation (18) & (19) then LHS of equation (18) & (19) does not reduce to zero.

Hence x^{-1} not exist for each $x = a_0G_0 + a_1G_1 + a_2G_2$ in A.

=> (A, @) is a commutative monoid.

Also

$$x@(y + z) = x@y + x@z \forall x, y, z \in A$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 149-152/Durge

Research Article

$$(x + y)@z = x@z + y@zz \forall x, y, z \in A$$

=> $(A, +, @)$ is a commutative ring with unity.

Conclusion

From the above discussion, I come to the following conclusions first I proved that (A, +, .) is a non abelian ring. Second I proved (A, +, *) Is a commutative ring with unity. Third I proved (A, +, @) is a commutative ring with unity. Where $A = \{a_0G_0 + a_1G_1 + a_2G_2 / a_i \in F \& G_i \in C(P)\}$ and C(P) = Class of algebraic Structure.

REFERENCES

Herstein IN (1992). *Topics in Algebra* 2nd edition (Wiley Eastern Limited) 26-256. ISBN: 0 85226 354 6.