Research Article

NATURE OF ALGEBRAIC STRUCTURE

$$A = \{a_0 + a_1i + a_2j / a_0, a_1, a_2 \in F(field)\}$$

*Manohar Durge

ANC, Anandwan Warora *Author for Correspondence

ABSTRACT

This is my sincere efforts towards realization of Unchanging Truth. This work is dedicated to my spiritual teacher Sri SriRamakrishana. In the Present work first I proved that (A, +, .) is a ring. Second I proved that (A, +, *) Is a commutative ring with unity. Third I proved that (A, +, •) is a semi ring, a commutative ring with unity, where $A = \{a_0 + a_1i + a_2j / a_0, a_1, a_2 \in F(field)\}$

Keywords: Binary Operation, Abelian Group, Semigroup, Ring, Field

INTRODUCTION

Herstein cotes in 1992

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

1 a, b \in G implies that a*b \in G

2 a, b, c \in G implies that (a*b)*c = a*(b*c)

3 There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$

4 For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every a, $b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set R is said to be an associative ring if in R there are defined two operations, defined by + and * respectively, such that for all a,b,c in R:

1 a+b is in R.

2 a+b = b+a.

3(a+b)+c = a+(b+c).

4 There is an element 0 in R such that a+0 = a, $\forall a \in R$

5 There exist an element -a in R such that a + (-a) = 0.

6 a*b is in R

7 a*(b*c) = (a*b)*c.

$$8 a * (b+c) = a * b + a * c$$
and $(b+c) * a = b*a + c*a$.

It may very well happen, or not happen, that there is an element 1 in R such that a*1 = 1*a = a for every a in R; if there is such we shall describe R as a ring with unit element.

If the multiplication of R is such that a*b = b*a for every a, b in R, then we call R a commutative ring.

DISCUSSION

Let
$$A = \{a_0 + a_1i + a_2j / a_0, a_1, a_2 \in F(field)\},$$

Let $= a_0 + a_1i + a_2j$; $y = b_0 + b_1i + b_2j$ be any two elements in A

Here first binary operation on A as + defined as

$$x + y = (a_0 + a_1i + a_2j) + (b_0 + b_1i + b_2j)$$

= $(a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j$ (1)

 \Rightarrow (A,+) is an abelian group.

Research Article

Case 1:

Second binary operation on A as. defined as

$$x. y = (a_0 + a_1i + a_2j).(b_0 + b_1i + b_2j)$$

= $(a_0 + a_1 + a_2)b_0 + (a_0 + a_1 + a_2)b_1i$
+ $(a_0 + a_1 + a_2)b_2j$ (2)

$$\Rightarrow$$
 (A,.) is a semi group.

Also

$$x. (y + z) = x. y + x. z, \forall x, y, z \in A$$

 $(x + y).z = x. z + y. z, \forall x, y, z \in A$
.....(3)
From (1), (2) & (3) we get

$$(A, +,.)$$
 is a ring.

Case 2:

Second binary operation on A as * defined as

$$x * y = (a_0 + a_1i + a_2j) * (b_0 + b_1i + b_2j)$$

= $(a_0b_0 + a_1b_2 + a_2b_1) + (a_0b_1 + a_1b_0 + a_2b_2) i$
+ $(a_0b_2 + a_1b_1 + a_2b_0) j$ (4)

$$\Rightarrow x * y = y * x, \forall x, y \in A$$

$$\Rightarrow x * (y * z) = (x * y) * z, \forall x, y, z \in A$$

=> 1 = 1 + 0i + 0j is the identity (multiplicative) of A, which is the multiplicative identity of F.

Let
$$x^{-1} = b_0 + b_1 i + b_2 j$$
, Where $x = a_0 + a_1 i + a_2 j$

$$\Rightarrow x * x^{-1} = x^{-1} * x = 1 = 1 + 0i + 0j$$

$$\Rightarrow (a_0b_0 + a_1b_2 + a_2b_1) + (a_0b_1 + a_1b_0 + a_2b_2)i + (a_0b_2 + a_1b_1 + a_2b_0)j$$

$$= 1 + 0i + 0i$$

$$a_0b_0 + a_1b_2 + a_2b_1 = 1$$
 (5)
 $a_0b_1 + a_1b_0 + a_2b_2 = 0$ (6)
 $a_0b_2 + a_1b_1 + a_2b_0 = 0$ (7)

Rewriting equation (6) & (7)

$$\Rightarrow \frac{b_0}{\begin{vmatrix} a_0 & a_2 \\ a_1 & a_0 \end{vmatrix}} = \frac{-b_1}{\begin{vmatrix} a_1 & a_2 \\ a_2 & a_0 \end{vmatrix}} = \frac{b_2}{\begin{vmatrix} a_1 & a_0 \\ a_2 & a_1 \end{vmatrix}} = constant = k$$

$$\Rightarrow b_0 = k(a_0^2 - a_1 a_2) \dots (10)$$

$$b_1 = -k(a_1a_0 - a_2^2)$$
(11)

$$b_2 = k(a_1^2 - a_0 a_2) \dots (12)$$

From equations (5), (10), (11) & (12) one obtains,

Research Article

$$a_0(a_0^2 - a_1 a_2)k + a_2(-a_1 a_0 + a_2^2)k + a_1(a_1^2 - a_0 a_2)k = 1$$

$$[(a_0^3 + a_1^3 + a_2^3) - 3a_0 a_1 a_2]k = 1$$

$$=> k = \frac{1}{[(a_0^3 + a_1^3 + a_2^3) - 3a_0a_1a_2]}$$

$$b_0 = \frac{(a_0^2 - a_1 a_2)}{[(a_0^3 + a_1^3 + a_2^3) - 3a_0 a_1 a_2]}$$

$$b_1 = \frac{(a_2^2 - a_1 a_0)}{[(a_0^3 + a_1^3 + a_2^3) - 3a_0 a_1 a_2]}$$

$$b_2 = \frac{(a_1^2 - a_0 a_2)}{[(a_0^3 + a_1^3 + a_2^3) - 3a_0 a_1 a_2]}$$

$$\Rightarrow$$
 $x^{-1} = b_0 + b_1 i + b_2 j$ be the inverse of $x = a_0 + a_1 i + a_2 j$ if $a_0 + a_1 + a_2 \neq 0$

- \Rightarrow (A,*) Is an abelian monoid.
- (A, +, *) Is a commutative ring with unity.

Case 3:

Second binary operation on A as \blacksquare defined as

Let $x = a_0 + a_1i + a_2j$, $y = (b_0 + b_1i + b_2j)$ be any two elements of A

binary operation on A as \blacksquare defined as

$$x = y = a_0b_0 + \{a_1b_0 + (a_1 + a_2)b_1 + a_1b_2\}i + \{a_2b_0 + a_1b_1 + (a_0 + a_2)b_2\}j \dots (13)$$

$$=> x \blacksquare y = y \blacksquare x, \forall x, y \in A$$

$$x \blacksquare (y \blacksquare z) = (x \blacksquare y) \blacksquare z, \forall x, y, z \in A$$

$$x \blacksquare 1 = 1 \blacksquare x, \forall x \in A$$

Let $x = a_0 + a_1i + a_2j$ be any element of A and assume that $b_0 + b_1i + b_2j$ is the inverse of x. Hence by definition

$$x \blacksquare x^{-1} = x^{-1} \blacksquare x = 1$$

$$=> (a_0 + a_1i + a_2j) \blacksquare (b_0 + b_1i + b_2j) = 1$$

$$=> a_0b_0 + \{a_1b_0 + (a_1 + a_2)b_1 + a_1b_2\}i$$

$$+\{a_2b_0+a_1b_1+(a_0+a_2)b_2\}j$$

$$= 1 + 0i + 0j$$

$$\Rightarrow a_0 b_0 = 1 \dots (14)$$

$$a_1b_0 + (a_1 + a_2)b_1 + a_1b_2 = 0.....(15)$$

$$a_2b_0 + a_1b_1 + (a_0 + a_2)b_2 = 0.....(16)$$

Solving (15) and (16) for
$$b_0, b_1, b_2$$

$$\frac{b_0}{\begin{vmatrix} (a_1+a_2) & a_1 \\ a_1 & (a_0+a_2) \end{vmatrix}} = \frac{-b_1}{\begin{vmatrix} a_1 & a_1 \\ a_2 & (a_0+a_2) \end{vmatrix}} = \frac{b_2}{\begin{vmatrix} a_1 & (a_1+a_2) \\ a_2 & a_1 \end{vmatrix}} = k$$

$$b_0 = k \begin{vmatrix} (a_1 + a_2) & a_1 \\ a_1 & (a_0 + a_2) \end{vmatrix}$$

$$= k\{(a_1 + a_2)(a_0 + a_2) - a_1^2\}$$

Research Article

$$b_0 = k(a_0a_1 + a_1a_2 + a_0a_2 + a_2^2 - a_1^2) \dots (17)$$

$$b_1 = -k \begin{vmatrix} a_1 & a_1 \\ a_2 & (a_0 + a_2) \end{vmatrix}$$

$$=-k\{a_1(a_0+a_2)-a_1a_2\}$$

$$b_1 = -k(a_0 a_1) \dots (18)$$

$$b_2 = k \begin{vmatrix} a_1 & (a_1 + a_2) \\ a_2 & a_1 \end{vmatrix}$$

$$= k\{a_1^2 - a_1a_2 - a_2^2\}$$

$$b_2 = k\{a_1^2 - a_2^2 - a_1a_2\} \dots (19)$$

From eq^n (14)

$$b_0 = \frac{1}{a_0}$$

eqⁿ (17) gives

$$k = \frac{1}{a_0 \{a_0 a_1 + a_1 a_2 + a_0 a_2 + a_2^2 - a_1^2\}} \dots (20)$$

Substituting the values of k in $eq^n(18)$ & (19) one obtains

$$b_1 = -\frac{a_1}{a_0 a_1 + a_1 a_2 + a_0 a_2 + a_2^2 - a_1^2} \dots (21)$$

$$b_2 = \frac{\{a_1^2 - a_2^2 - a_1 a_2\}}{a_0 \{a_0 a_1 + a_1 a_2 + a_0 a_2 + a_2^2 - a_1^2\}}$$
.....(22)

Substituting the values of b_0 , b_1 & b_2 in LHS of eq^n (15) one obtains

$$a_1b_0 + (a_1 + a_2)b_1 + a_1b_2$$

$$= a_1 \frac{1}{a_0} + (a_1 + a_2) \left\{ \frac{-a_1}{a_0 a_1 + a_1 a_2 + a_0 a_2 + a_2^2 - a_1^2} \right\}$$

$$+\frac{a_1\{a_1^2-a_2^2-a_1a_2\}}{a_0\{a_0a_1+a_1a_2+a_0a_2+a_2^2-a_1^2\}}$$

$$=\frac{\{a_0a_1+a_1a_2+a_0a_2+a_2^2-a_1^2\}-(a_1+a_2)a_0a_1+a_1\{a_1^2-a_2^2-a_1a_2\}}{a_0\{a_0a_1+a_1a_2+a_0a_2+a_2^2-a_1^2\}}$$

$$=\frac{\left[a_0a_1+a_1a_2+a_0a_2+a_2^2-a_1^2-a_1^2a_0-a_0a_1a_2+a_1^3-a_2^2a_1-a_1^2a_2\right]}{a_0\{a_0a_1+a_1a_2+a_0a_2+a_2^2-a_1^2\}}$$

Hence value of b_0 , $b_1 \& b_2$ are not unique i.e. x^{-1} not unique

$$=> x^{-1}$$
 does not exist for each $(a_0 + a_1i + a_2j)$ in A.

$$=>$$
 Inverse is not exist for each non zero element in A .

 $=> (A, \blacksquare)$ is a commutative monoid.

Research Article

 $=> (A, +, \blacksquare)$ is a semi ring, a commutative ring with unity.

Conclusion

From the above discussion, I come to the following conclusions first I proved that (A, +, .) is a ring. Second I proved that (A, +, *) Is a commutative ring with unity. Third I proved that $(A, +, \blacksquare)$ is a semi ring, a commutative ring with unity. Where $A = \{a_0 + a_1i + a_2j / a_0, a_1, a_2 \in F(field)\}$

REFERENCES

Herstein IN (1992). Topics in Algebra 2nd edition (Wiley Eastern Limited) 26-256. ISBN: 0 85226 354 6.