Research Article

GENERALIZED RING OF QUATERNION WITH UNITY

*Manohar Durge

ANC, Anandwan Warora *Author for Correspondence

ABSTRACT

This is my sincere efforts towards realization of Unchanging Truth. This work is dedicated to my spiritual teacher Sri SriRamakrishana. In the Present work first I proved that (A, +, *) is a Generalised Ring of Quaternion with unity

Where $A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 / a_i \in F \& G_i \in C(P)\}$, And C(P) = Class of algebraic Structure

Keywords: Binary Operation, Abelian Group, Ring, Field, Class of Algebraic Structure

INTRODUCTION

Herstein cotes in 1992

Definition: A nonempty set of elements G is said to form a group if in G there is defined a binary operation, called the product and defined by *, such that

1 a, b \in G implies that a*b \in G

2 a, b, c \in G implies that (a*b)*c = a*(b*c)

3 There exist an element $e \in G$ such that $a^*e = e^*a = a$ for all $a \in G$

4 For every $a \in G$ there exist an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition: A group G is said to be abelian (or Commutative) if for every a, $b \in G$,

$$a * b = b * a$$
.

Definition: A nonempty set R is said to be an associative ring if in R there are defined two operations, defined by + and * respectively, such that for all a,b,c in R:

1 a+b is in R.

2 a+b = b+a.

3(a+b)+c = a+(b+c).

4 There is an element 0 in R such that $a+0 = a, \forall a \in R$

5 There exist an element -a in R such that a + (-a) = 0.

6 a*b is in R

7 a*(b*c) = (a*b)*c.

$$8 a * (b+c) = a * b + a * c$$
and $(b+c) * a = b*a + c*a.$

It may very well happen, or not happen, that there is an element 1 in R such that a*1 = 1*a = a for every a in R; if there is such we shall describe R as a ring with unit element.

If the multiplication of R is such that a*b = b*a for every a, b in R, then we call R a commutative ring.

DISCUSSION

Let
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 \ / \ a_i \in F \ \& \ G_i \in C(P)\}$$
 Where $C(P) = Class$ of $algebraic\ Structure$ Let $x = a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3$;
$$y = b_0G_0 + b_1G_1 + b_2G_2 + b_3G_3$$

$$z = c_0G_0 + c_1G_1 + c_2G_2 + c_3G_3$$
;
$$G_0 = 1G_0 + 0G_1 + 0G_2 + 0G_3$$

$$0 = 0G_0 + 0G_1 + 0G_2 + 0G_3$$

$$-x = (-a_0)G_0 + (-a_1)G_1 + (-a_2)G_2 + (-a_3)G_3$$

$$cx = (ca_0)G_0 + (ca_1)G_1 + (ca_2)G_2 + (ca_3)G_3, c \in F.$$
 Here first binary operation $+$ on A defined as

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 131-133/Durge

Research Article

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2014 Vol. 4 (1) January-March, pp. 131-133/Durge

Research Article

$$F_{1} = \{-a_{1}^{3} - 2a_{0}a_{1}a_{3} + a_{1}(a_{0}^{2} + a_{2}^{2} + a_{2}^{2})\}$$
.....(13)
$$F_{2} = \{a_{2}^{3} + 2a_{0}a_{1}a_{3} - a_{2}(a_{0}^{2} + a_{1}^{2} + a_{3}^{2})\}$$
......(14)
$$F_{3} = \{-a_{3}^{3} - 2a_{0}a_{1}a_{2} + a_{3}(a_{0}^{2} + a_{1}^{2} + a_{2}^{2})\}$$
......(15)

From eq^n (4), (11), (12), (13), (14) & (15) one obtains

$$k\{a_0F_0 - a_1F_1 + a_2F_2 - a_3F_3\} = 1$$

$$k = \frac{1}{4a_0F_0 - a_1F_1 + a_2F_2 - a_3F_3} = \infty$$
, If $a_0 = a_1 = a_2 = a_3$

Hence x^{-1} not exist for each $x \in A$

(A, +,*)Is a Generalised Ring of Quaternion with unity

Where
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 / a_i \in F \& G_i \in C(P)\}$$

And $C(P) = Class of algebraic Structure$

Conclusion

From the above discussion, I come to the following conclusions first I proved that (A, +, *)Is a Generalised Ring of Quaternion with unity

Where
$$A = \{a_0G_0 + a_1G_1 + a_2G_2 + a_3G_3 / a_i \in F \& G_i \in C(P)\}$$

And $C(P) = Class of algebraic Structure$

REFERENCES

Herstein IN (1992). Topics in Algebra 2nd edition (Wiley Eastern Limited) 26-256. ISBN: 0 85226 354 6.