
International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm

2014 Vol. 4 (1) January-March, pp. 57-61/Vinocha et al.

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 57

A ROOT-FINDING ALGORITHM UNDER GENERALISED

TRANSFORMATION (RM CODES)

*O.P. Vinocha
1
, J.S. Bhullar

2
 and B.S. Brar

3

1
Ferozepur College of Engineering and Technology, Ferozepur, Punjab (India)

2
Department of Applied Sciences, Malout Institute of Management and Information Technology (MIMIT),

Malout, Punjab (India)
3
Department of Applied Sciences, Baba Farid College of Engineering and Technology, Bathinda, Punjab

(India)

*Author for Correspondence

ABSTRACT

In this correspondence, we use an efficient root-finding algorithm under generalized transformation (T =
z

n
.ψk-i-1, n = 1, 2, 3, ….), which finds all the roots of P(T). A generalized algorithm can be used to speed

up the list-decoding of RM codes, where P(T) is non-trivial polynomial in T with co-efficients in

Fq[X1,…..., Xm] which is a ring of polynomials in m variables with co-efficients in Fq.

Keywords: Generalised Transformation, List-Decoding, Rm Codes, Root-Finding Algorithm, Ring Of

Polynomials, Graded Lexicographical Ordering.

INTRODUCTION

Reed-Muller (RM) codes are a generalization of RS codes. Let Fq be the finite field having q elements.

Let Fq [X1, …..., Xm] be the ring of polynomials in m variables with co-efficients in Fq. Let Fq
m
 be the m-

dimensional vector space over Fq , where n = q
m
 . Let P1, ….., Pn be an enumeration of the points of Fq

m
 ,

where n = q
m
 . The q-ary RM code of order u in m variables, is denoted by RMq(u,m), and is defined as:

RMq(u,m) = {(f(P1), ……,(f(Pn): f ∈ Fq[X1,…..., Xm], deg(f) ≤u }. When m = 1, the code RMq(u,m) is an

RS code. RMq(u,m) is an (n,k)code, where n = q
m
 , k =

u+m
Cm .

List decoding is a decoding method, which makes possible to recover information in the presence of

errors more than the general error-correction bound. A decisive step in list-decoding is to find the roots of

a polynomial with co-efficients being polynomials (or rational) functions over a finite field. Then these
roots are utilized to re-construct the code words which are candidates for the transmitted codeword.

Wu et al., (2005) have presented a simple and efficient algorithm, which solves the root-finding problem

for list-decoding of RM codes. They have used the graded lexicographical ordering of monomials, they
have modified the algorithm presented in An Algorithm for finding the roots of the polynomials over

order domains by Wu (2002), and they also proved the correctness of the algorithm. One of the features of

their algorithm is that it can be used to find all roots (not only those with degree ≤ a specified integer u),

in space Fq[X1,…..., Xm], of polynomial H(T) = h0 + h1T + ……+ hs T
s
, i. e. the algorithm can find all the

linear factors of H(T).

New List-Decoding Algorithm

Let us denote the set of non-negative integers by I+0. Let us denote the set of m-tuples of non-negative

integers by I+0
m
. Clearly, every monomial:

 𝑋1
𝑎1 ,…….,

 𝑋𝑚
𝑎𝑚

 in Fq[X1,…..., Xm] uniquely corresponds to

an element (a1,…..,am) in I+0
m
. The graded lexicographical ordering on set of m-tuples of non-negative

integers I+0
m
 , is denoted by <0, and is defined as (a1,…..,am) <0 (b1,…..,bm) if one of the following two

conditions holds: (i) 𝑎𝑖
𝑚
𝑖=1 < 𝑏𝑖

𝑚
𝑖=1 ; (ii) 𝑎𝑖

𝑚
𝑖=1 = 𝑏𝑖

𝑚
𝑖=1 . For example, if m = 2, then in I+0

m
 under

graded lexicographical ordering, we must have: (0,0) <0 (1,0) <0 (0,1) <0 (2,0) <0 (1,1) <0 (0,2) <0

…….This definition gives us an ordering of monomials in Fq[X1,…..., Xm], i.e. 𝑋1
𝑎1 ,…….,

 𝑋𝑚
𝑎𝑚

<0

𝑋1
𝑏1 ,…….,

 𝑋𝑚
𝑏𝑚

 iff (a1,…..,am) <0 (b1,…..,bm).

The space Fq[X1,…..., Xm]≤ v is a linear(vector) space over Fq and has dimension
v+m

Cm . Let {ψ0 ,……..,

ψk-1} be a basis of Fq[X1,…..., Xm]≤ v , where ψ0 = 1, and for 1 ≤ j ≤ k-1, ψj is some monomial 𝑋1
𝑎1 ,…….,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm

2014 Vol. 4 (1) January-March, pp. 57-61/Vinocha et al.

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 58

𝑋𝑚
𝑎𝑚 with a1 +……+ am ≤ v. We suppose that ψ0 <0 ψ1 <0

,…….., <0

 ψk-1. For the basis {ψ0 ,…….., ψk-

1}, every polynomial g ϵ Fq[X1,…..., Xm]≤ v can be written as: g = g0 ψ0 + g1 ψ1 + …….+ gk-1 ψk-1, where

g0, g1,……,gk-1 are elements of Fq. We shall use the array {gk-1, ………,g1, g0}of elements of Fq to

represent the polynomial g = g0 ψ0 + g1 ψ1 + …….+ gk-1 ψk-1.
We present a new algorithm, which is as follows:

Input: A non-zero polynomial: P(T) = p0 + p1T + ……+ ps T
s
, where pj ϵ space Fq[X1,…..., Xm], and a

basis{ψ0 ,…….., ψk-1}, of space Fq[X1,…..., Xm]≤ v.
Output: A list that contains all the roots of P(T) in Fq[X1,…..., Xm]≤ v.

Step1: Set i = 0. Set P0(T) = P(T). Step 2: Substitute T = z
n
.ψk-i-1 , n = 1,2,3,…into Pi(T), where z denotes

an undetermined element in Fq. Pi(z
n
. ψk-i-1) is a polynomial in the variables X1,…..., Xm. Compute the

leading co-efficient of Pi(z
n
. ψk-i-1), which is denoted by fi(z), i.e. fi(z) = LC(Pi(z

n
. ψk-i-1)). Clearly, fi(z) is a

polynomial in z
n
 and hence in z with co-efficients in Fq. Step 3: Find all the roots of fi(z). Step 4: For

each of the distinct roots βk-i-1 of the polynomial fi(z), if i < k – 1, set Pi + 1(T) = Pi(T + βk-i-1. ψk-i-1), set i

←i + 1, and return to step 2. Otherwise, go to step 5. Step 5: Output all arrays [βk-1,……, β1, β0].
We discuss various examples to illustrate our list-decoding algorithm.

Illustration 1 : Let the given polynomial is:

P(T) = T
2
- (xy + x))T

. (1)

Comparing it with P(T) = p0 + p1T + ……+ ps T
s
, we see that: s= 2, p0 = absent, p1 = xy + x, p2 = 1.

Therefore, v = 𝑚𝑎𝑥 {(deg(pi)-deg(ps) / (s-i): i = 0,1,….., 𝑠 − 1} = 2

So, v = 2. Hence we shall try to find all roots of P(T) in F2[x, y]≤ 2. Clearly, the

space F2[x, y]≤ 2 has a basis {1, x, y, x
2
, xy, y

2
}, where 1<0 x <0 y <0 x

2
 <0 xy <0 y

2
, because every

polynomial in two variable x, y of degree ≤ 2, can be written as a linear combination of members of the

set {1, x, y, x
2
, xy, y

2
}. Let the roots of P(T) be: G = g0 ψ0 + g1 ψ1 + …….+ g6 ψ6. We shall find co-

efficients g0, g1,…….,g6 of roots G recursively by using our algorithm.

Step 1: Set i = 0. Set P0(T) = P(T).
Step 2: Substitute T = z

n
.ψk-i-1 into Pi(T) i.e. substitute T = z

n
.ψk-1 into P0(T) (since i = 0).

Therefore, P0(T) = P0(z
n
.ψk-1)

= P0(z
n
.ψ5) (since k = 6)

= P0(z
n
y

2
) (since ψ5 = y

2
)

= P(z
n
y

2
) (since P0(T) = P(T))

= (z
n
y

2
)

2
- (xy + x) (z

n
y

2
)

= z

2n
y

4
– z

n
xy

3

- z

n
xy

2
.

Leading terms are: z
2n

y
4
, - z

n
xy

3
. So, LC’s are: f0 (z) = z

2n
, - z

n
.

Step 3: Roots of f0 (z) = z
2n

, - z
n
 are: z = 0 i.e. β5 = 0.

Step 4: Now i = 0 < (k-1)(=5). Set Pi+1(T) = Pi(T + βk-i-1. ψk-i-1)

i.e. Set P1(T) = P0(T + βk-1. ψk-1) (since i = 0)
= P0(T + β5.ψ5) (since k = 6)

= P0(T + (0).y
2
) (since β5 = 0, ψ5 = y

2
)

= P0(T).
Therefore, P1 (T) = P0(T) when β5 = 0.

We repeat the process again and again, and continuing in this way, ultimately we shall obtain:

 f0(z) → β5 = 0 → β4 = 0 → β3 = 0 → β2 = 0 → β1 = 0 → β0 = 0.

 and f0(z) → β5 = 0 → β4 = 1 → β3 = 0 → β2 = 0 → β1 = 0 → β0 = 0.
Therefore, whole of the algorithm gives us two arrays:

 [0 0 0 0 0 0]

 [0 1 0 0 1 0]
 (g5 g4 g3 g2 g1 g0)

Hence roots G = g0 ψ0 + g1 ψ1 + g2 ψ2+ g3 ψ3 + g4 ψ4 + g5 ψ5 = g0(1) + g1(x) + g2(y) + g3(x
2
) + g4(xy) +

g5(y
2
) are: G1 = 0, and G2 = x + xy. Put G1 in (1), we get: P(G1) = (G1)

2
- (xy + x)(G1) = (0)

3
- (xy +x)(0)

= 0. Therefore, G1 is a root of (1). Put G2 in (1),we get: P(G2) = (G2)
2
- (xy + x)(G2)=(x + xy)

2
- (xy + x)(x

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm

2014 Vol. 4 (1) January-March, pp. 57-61/Vinocha et al.

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 59

+ xy) = 0. Therefore, G1, G2 are roots of (1).Hence [0 0 0 0 0 0] and [0 1 0 0 1 0] constitute our

decoding-list.

Illustration 2: Let the given polynomial is:

 P(T) = T
3
- (x

2
y)T

2
+ (y)T - x

2
y

2
. (2)

We proceed as in illustration 1, and ultimately we will get:

f0(z)→β9 = 0 →β8 = 0→β7 = 0 →β6 = 0 →β5 = 0→β4 = 0 →β3 = 0 →β2 = 0 →β1 = 0 →β0 = 0.

and f0(z)→β9= 0 →β8 = 0→β7 = 1 →β6 = 0 →β5 = 0→β4 = 0 →β3 = 0 →β2 = 0 →β1 = 0 →β0 = 0.
Therefore, whole of the algorithm gives us two arrays:

 [0 0 0 0 0 0 0 0 0 0]

 [0 0 1 0 0 0 0 0 0 0]

 (g9 g8 g7 g6 g5 g4 g3 g2 g1 g0)
Hence roots G = g0 ψ0 + g1 ψ1 + + g2 ψ2+ g3 ψ3 + g4 ψ4 + g5 ψ5 + g6 ψ6 + g7 ψ7 + g8 ψ8 + g9 ψ9

= g0(1) + g1(x) + g2(y) + g3(x
2
) + g4(xy) + g5(y

2
) + g6(x

3
) + g7(x

2
y) + g8(xy

2
) + g9(y

3
) are: G1 = 0, and G2 =

x
2
y. Put G1 in (2), we get: P(G1) ≠0. Therefore, G1 is not a root of (2). Put G2 in (2), we get: P(G2) = 0.

Therefore, G2 is a root of (2). So, we reject G1 and accept G2. Hence our decoding-list will contain only

one codeword, i.e. [0 0 1 0 0 0 0 0 0 0].

Illustration 3: Let the given polynomial is:
 P(T) = T

3
- (x

2
y)T

2
+ (y)T . (3)

Then proceeding exactly as in illustration 1, ultimately we shall get the same arrays, i. e. [0 0 0 0 0 0

0 0 0 0], [0 0 1 0 0 0 0 0 0 0] as in illustration 2. As a result, we have: G1 = 0, and G2 = x
2
y.

Putting these in (3), we see that G1 is root of (3), and G2 is not. So, in this case, our decoding-list will
contain only one codeword, i.e. [0 0 0 0 0 0 0 0 0 0], which is all-zero codeword.

Correctness of Our Algorithm

 Under Generalised Transformation T = z
n
.ψk-i-1, n = 1,2,3,….), the correctness of our algorithm

is discussed in the form of following theorems:

Theorem 1: Let P(T) = p0 + p1T + ……+ ps T
s
 be a non-zero polynomial with co-efficients in Fq[X1,…...,

Xm]. Then our algorithm generates a list that contains all the roots of P(T) in Fq[X1,…..., Xm]≤ v.

Proof: Let G = g0 ψ0 + g1 ψ1 +……….. + gk-1 ψk-1 ϵ space Fq[X1,…..., Xm]≤v (4)
 be any root of P(T) = p0 + p1T + ……+ ps T

s
 (5)

We shall prove that the co-efficients: gk-1,………., g0 of G are found recursively by the algorithm as a

result of which G will be in the output of the algorithm.
Because G is a root of P(T), so, P(G) = 0. (6)

Hence P(G) = p0 + p1G + ……+ ps G
s

 = p0 + p1(g0 ψ0 + g1 ψ1 +… + gk-1 ψk-1) + …+ ps (g0 ψ0 + g1 ψ1 +…+ gk-1 ψk-1)
s

is the zero polynomial in Fq[X1,…..., Xm].

Therefore, all the co-efficients of P(G) will coincide with the zero element in Fq.

So, clearly, in particular, leading co-efficient of P(G) will be zero,

 i.e. LC(P(G)) = 0. (7)
Because, 1 <0 ψ0 <0 ψ1 <0

,…….., <0

 ψk-1, Therefore,

LC(P(G)) = LC[p0 + p1(g0 ψ0 + g1 ψ1 +… + gk-1 ψk-1) + …+ ps (g0 ψ0 + g1 ψ1 +…+ gk-1 ψk-1]

 = LC[p0 + p1 gk-1 ψk-1 + …+ ps gk-1
s
 ψk-1

s
]

 = LC[P(gk-1ψk-1)] [because P(T) = p0 + p1T + ……+ ps T
s
]

So, LC(P(G)) = LC[P(gk-1ψk-1)]

Consider: f0(z) = LC[P0(z
n
. ψk-1)], where z

n
 and hence z is an undetermined element in Fq and P0(T) =

P(T). Now f0(z) = LC[P0(z
n
. ψk-1)] is a polynomial in z

n
 and hence in z with co-efficients in Fq and

degree ≤ s. Because our assumption is that G is a root of P(T), and G = g0 ψ0 + g1 ψ1 +……+ gk-1 ψk-1 ,

P(T) = p0 + p1T + ……+ ps T
s
 , f0(z) = LC[P0(z

n
. ψk-1)], therefore, gk-1 is a root of f0(z). So, gk-1 is found

in Step 3 of the algorithm.
 Now, for, i = 0,1, ……., k-2, from the definition of Pi+1 in Step 4 of the algorithm, we will

have: Pi+1(T) = Pi(T + gk-i-1 ψk-i-1). This implies:

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm

2014 Vol. 4 (1) January-March, pp. 57-61/Vinocha et al.

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 60

Pi+1(g0 ψ0 + g1 ψ1 +….. + gk-i-2 ψk-i-2) = Pi(g0 ψ0 + g1 ψ1 +….. + gk-i-2 ψk-i-2 + gk-i-1 ψk-i-1)

 = Pi(g0 ψ0 + g1 ψ1 +……….. + gk-i-1 ψk-i-1)

 ………………………………………………..

 ………………………………………………..
 = P0(g0 ψ0 + g1 ψ1 +……….. + gk-i-1 ψk-i-1)

 = P(g0 ψ0 + g1 ψ1 +……….. + gk-i-1 ψk-i-1)

 = P(G) (using (4))
 = 0 (using (6))

Therefore, Pi+1(g0 ψ0 + g1 ψ1 +……….. + gk-i-2 ψk-i-2) ≡0. (8)

 It should be noted that here Pi+1(T) has been defined from Pi(T)and gk-i-1; and Pi(T) has been

defined from and Pi-1(T)and gk-i ; and so on. Therefore, (8) implies:LC(Pi+1(gk-i-2 ψk-i-2)) ≡0. This means
that gk-i-2 is a root of fi+1(z), where fi+1(z) = LC[Pi+1(z

n
. ψk-i-2)]. Therefore, gk-i-2 is found in Step 3. So, we

conclude that: gk-1, gk-2,………. g1, g0 are found by our algorithm. Hence proof of the theorem is

complete.
Lemma: Let P(T) = p0 + p1T + ……+ ps T

s
 be a non-zero polynomial, where pj ϵ Fq[X1,…..., Xm] for j =

0,1,….,s. Let ψ0, ψ1 ,…….., ψd be a basis of space Fq[X1,…..., Xm]≤ v. Suppose β ϵ Fq be a root of

multiplicity r, where r is a positive integer, of the polynomial equation: f(z) = LC[P(z
n
. ψd)] = 0, where z

is an undetermined element in Fq, and LC of P(z
n
. ψd) is determined w.r.t. the variables X1,…..., Xm. We

define 𝑃 (T) and 𝑓 (z) as: 𝑃 (T) = P(T + β. ψd) and 𝑓 (z) = LC(𝑃 (z
n
. ψd-1)). Then 𝑓 (z) is a polynomial in z

n
,

hence in z of degree ≤ r.
Theorem 2: Let P(T) = p0 + p1T + ……+ ps T

s
 be a non-zero polynomial with co-efficients in Fq[X1,…...,

Xm]. Then output of our algorithm contains at the most s elements.

Proof: We know that our algorithm finds the roots of P(T) in Fq[X1,…..., Xm]≤ v , which is a k dimensional
space. We shall use the Principle of Mathematical Induction on k to prove the theorem.

 We have already seen that f0(z) is a polynomial in z
n
 and hence in z with co-efficients in Fq and

degree ≤ s. Therefore, f0(z) will have at the most s roots βk-1, counting the multiplicities, so we shall get at
the most s arrays [βk-1] of length 1.

 Now let us suppose that fi-1(z) has t ≤ s roots βk-i, denoted by: βk-1
(1)

 , βk-1
(2)

 ,………, βk-1
(t)

 , such

that every βk-1
(j)

 , is a root of multiplicity rj, where r1 + r2 +…..+ rt ≤ s. Also we suppose that from these

roots, we get at the most t ≤ s arrays [βk-1,….., βk-i] of length i.
 From Step 4 and Step 2 of our algorithm, for each root βk-i, we construct a Pi(T) and the

corresponding fi(z). Therefore, by Lemma, fi(z) is a polynomial in z
n
 and hence in z of degree ≤ rj. Hence

fi(z) will have at the most rj roots βk-i-1. So, in total, we can get at the most: r1 + r2 +…..+ rt ≤ s arrays: [βk-

1,….., βk-i, βk-i-1] of length i + 1. Therefore, by Principle of Mathematical Induction, we conclude that we

have at the most s arrays [βk-1, βk-2,….., β0]. So, size of output list of our algorithm is at the most s. Hence

proof of the theorem is complete.
Theorem 3: Let P(T) = p0 + p1T + ……+ ps T

s
, where p0, p1, …, ps ϵ Fq[X1,…..., Xm], ps ≠ 0. Let v be

defined as: v = 𝑚𝑎𝑥 {(deg(pi)-deg(ps) / (s-i): i = 0,1,….., 𝑠 − 1} . Then any root of P(T) in Fq[X1,…...,

Xm] has degree at the most v.

Proof: Let there be a polynomial G in Fq[X1,…..., Xm] with:

 deg(G) > 𝑚𝑎𝑥 {(deg(pi)-deg(ps) / (s-i): i = 0,1,….., 𝑠 − 1} = v. (9)

Consider: P(G) = p0 + p1G + ……+ ps G
s

 (10)

Therefore, for i = 0,1,….., s-1, we have:

 deg(ps.G
s
) - deg(pi.G

i
) = deg(ps) - deg(pi) + (s-i) deg(G)

 >deg(ps) - deg(pi) + (deg(pi) - deg(ps)) (using (9))

 = 0.

This implies: deg(ps.G
s
) > deg(pi.G

i
) (11)

So, (10) & (11) implies that P(G) cannot be zero polynomial. Hence G cannot be a root of P(T), where

degree of G is greater than v (from (9)). So, any root of P(T) will have degree at the most v. Therefore,

proof of the theorem is complete.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm

2014 Vol. 4 (1) January-March, pp. 57-61/Vinocha et al.

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 61

Conclusion
In the discussion, we have used the concept of graded lexicographical ordering. We have taken v large

enough, given by the formulation: v = 𝑚𝑎𝑥 {(deg(pi)-deg(ps) / (s-i): i = 0,1,….., 𝑠 − 1} . This helps us to

find the roots of the polynomial P(T), where the polynomial P(T) is computed by the list-decoder
corresponding to a received vector, say, y = (y1, y2,…., yn). In our algorithm, we have used the

generalized transformation: T = z
n
.ψk-i-1. We have put the LC of polynomial fi(z) = Pi(z

n
.ψk-i-1) to zero to

find roots of fi(z), which form the basis of arrays, which are candidates for the transmitted codewords. In
case, where leading term/terms do not contain z, there we have considered next leading term/terms which

contain z and have taken their LC to be utilised. In the first illustration, we have taken polynomial P(T) of

second degree and our decoding-list also contains two codewords, which also satisfy the polynomial P(T).

In the second and third illustrations, the polynomial P(T) is of second degree, and by our algorithm, we
are able to find two arrays, but one of these satisfies the polynomial P(T) and the other not, so that our

decoding-list contains one codeword, where we have expected two codewords. Therefore, we also

conclude that every element of the output-list may not be a root of polynomial P(T). It may be, it may not
be. Further, we conclude that the output-list contains at the most s elements, where s is the degree of the

polynomial P(T) = p0 + p1T + ……+ ps T
s
. We also conclude that any root of P(T) has degree at the most

v.

REFERENCES

Guruswami V and Sudan M (1999). Improved Decoding of Reed-Solomon and Algebraic-Geometric

codes. IEEE Transactions on Information Theory 45(7) 1757-1767.
Pellikaan R and Wu XW (2004). List Decoding of q-ary Reed-Muller Codes. IEEE Transactions on

Information Theory 50(4) 679-682.

Roth R and Ruckenstein G (2000). Efficient Decoding of Reed-Solomon Codes Beyond Half the
Minimum Distance. IEEE Transactions on Information Theory 46(1) 246-257.

Wu XW and Siegel PH (2001). Efficient Root-Finding Algorithm With Application to List-Decoding of

Algebraic-Geometric Codes. IEEE Transactions on Information Theory 47(6) 2579-2587.

Wu XW (2002). An Algorithm for Finding the Roots of the Polynomials over Order Domains.
Proceedings of IEEE International Symposium on Information Theory, Lausane, Switezerland 202.

Geil O and Pellikan R (2002). On the Structure of Order Domains. Finite Fields Their Applications 8

369-396.

Wu Xin-Wen, Kuijper Margreta and Udaya Parampalli (2005). A Root-Finding Algorithm for List
Decoding of Reed-Muller Codes. IEEE Transactions on Information Theory 51(3) 1190-1196.

