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ABSTRACT 

We consider a lost sale recapture model in a newsvendor framework. In this paper we analyse how to 

recapture lost customers in which easier to win back old customers than it is to acquire new customers. 
We consider a single-period decision of a retailer facing uncertain and price dependent demand. The 

typical modeling of the problem in a newsvendor framework assumes the unfulfilled demand to be lost 

once and for all. However, in reality, there may be an opportunity to backlog the lost sales, by offering 

some incentive for waiting. Nevertheless, the retailer's procurement price may be higher, due to the likely 
cost increase of the emergency purchase. Further, not all the customers that could not buy in the first 

instance may avail the rebate offer and buy. The backlog fill rate is modeled as a function of the 

proportion of the rebate to the price. Then the retailer has to decide ahead of the realization of the demand 
the quantity to be ordered, the price and the rebate to be offered for backlogged sales that will maximize 

its expected profit. Numerical examples are presented to highlight model sensitivities to parametric 

changes. The back log fill rate is modelled as a log function of adding one to the proportion of rebate 

relative to the price. Sensitivities of optimal rebate to demand errors are carried out with uniform 
distribution. 

 

Keywords: Newsvendor Problem, Lost Sales, Rebates, Price Dependent Demand 

 

INTRODUCTION 

This paper considers the buying and ordering policies of a newsvendor-type retailer, faced with the 
possibility of backordering at least some of the shortages incurred from demand underestimation. The 

backordering occurs through an emergency purchase of the items in question at some premium over the 

regular purchasing cost. In turn, the retailer offers to the end-customers left out of the initial sale a rebate 

incentive upon purchase of each item backordered. 
The problem of backordering shortage items has been considered recently by Weng (2004) and Zhou and 

Wang (2009). Both generalize the newsvendor problem (heretofore NVP) into a two-step decision 

process. In the first stage, the retailer places the initial order that equates the costs of over- and under-
estimation of the demand, as corresponds to the traditional NVP. In the second, the retailer may place a 

special order from the manufacturer at the end of the selling season. The basic difference between the two 

models lies in whether the manufacturer (Weng, 2004) or both parties (Zhou and Wang, 2009) pay for the 
setup costs of the special order.  

Our model differs from these two in five fundamental ways. First, we consider a price-dependent demand, 

with the selling price, p, a decision variable, more in accordance with the main tenets of microeconomic 

theory (e.g. Arcelus and Srinivasan, 1987). Second, we introduce a rebate-dependent fill rate, Ω, 
representing the probability of the end-customers returning to satisfy the unfilled demand. This fill rate is 

a function of the size of the rebate, r, offered relative to the selling price. Third, the policy decisions on 

the emergency order and on the rebate policy occur up front, along with the remaining ordering and 
pricing policies, rather than at the end of the season, thereby rendering the resulting formulation into a 

more traditional one-stage, rather than a two-stage, NVP. Fourth, the decision variables are the selling 

price, the order size and the rebate offered as an incentive to satisfy at least a portion of the unfulfilled 

demand. Our model yields a unique profit-maximizing solution, for a family of deterministic mean 
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demand functions and of probability distributions of the demand error that encompasses the vast majority 

of the models in the existing literature. 

The organization of the paper is as follows. The next section presents the formulation of the model, based 

upon that of Zhou and Wang (2009), to which we add the offering of a price rebate per backordered unit 
purchased. This paper is similar in lines of Arcelus et al., (2012), and Patel and Gor (2013). Here, we use 

an entirely different fill rate function than discussed in Patel and Gor (2013). We describe the 

characteristics of the model, develop the objective function and derive the profit-maximizing optimality 
conditions that are shown to be unique. Section 3 presents a numerical example. In addition to illustrating 

the main features of the model and discussing some comparative statics of interest, this section attempts 

to conjecture the behavioural relationship between various parameters and variables. A conclusions 
section completes the paper. Table 1 lists the notations used throughout the paper. 

 

Table 1: Notation 

p The selling price per unit (decision variable) 
v The salvage value per unsold unit 

q The order quantity (decision variable) 

r The rebate per backordered item (decision variable) 
c The acquisition cost per unit 

s The shortage penalty per unsold unit 

D The total demand rate per unit of time 

g, ε The deterministic and stochastic components, respectively, of D 
a,b The upper and lower values, respectively, of ε 

μ, ζ The mean and standard deviation, respectively, of ε 

f, F The density function and the cumulative distribution function, respectively, of ε 
δ0,δ1 The intercept and slope, respectively, of the deterministic linear demand function  

γ0, γ1 
The intercept and the demand elasticity, respectively, of the iso-elastic deterministic 

demand function 
Ω The fill rate of backlogged demand 

d The premium on the purchase price of each backlogged unit acquired 

z The stocking factor  

Λ, Φ  The expected number of leftovers and shortages, respectively  
e The price elasticity of demand 

Iε The generalized failure rate function 

π(p,q,r) The retailer’s profit function 

E(p,q,r) The retailer’s expected profit function 

 

Model Formulation 

In this section, we describe the key characteristics of the model, formulate the retailer’s profit-maximizing 
objective function and derive the optimality conditions. Observe that, in the development of the models, 

the arguments of the functions are omitted whenever possible, to simplify notation.  

Characteristics of the model 
Characteristic 1: Key properties of the demand function.   

 The random single-period total demand, D (p,ε), is of the form: 

errortivemultiplicaif,)p(g

erroradditiveif,)p(g),p(D
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 ε has a GSIFR or generalized strictly increasing failure rate, Iε, since 

)F1/(fIwhere,0/II'     
 

Observe in (1) that the total demand includes a deterministic component of g units, denoted as the mean 

demand; and a stochastic element, denoted by  units. Following the customary conventions of the 
literature on the subject, the relationship between g and ε is assumed to be either additive (Mills, 1958) or 

multiplicative (Karlin and Carr, 1962), with the former (latter) exhibiting a constant (variable) error 
variance and a variable (constant) coefficient of variation. Chan, et al., (2004), Lau, et al., (2007), 

Petruzzi and Dada (1999), Yao (2002) and Yao, et al., (2006) discuss the implications of these 

assumptions and provide a review of the extant works on the field. 
Furthermore, unless otherwise stated, there is no need to identify a functional form of the mean demand, 

g(p). The results presented here are applicable to all the demand distributions normally used in the sales-

promotion field, i.e. linear, iso-elastic, log-concave or concave in p and the like (Yao, 2002; Yao, et al., 

2006). Detailed discussions can be found in, Arcelus et al., (2012) and Patel and Gor (2013). 
Characteristic 2: A fill rate, Ω, given by the following expression: 
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 The fill rate, Ω, measures the fraction of end-customers who wish to fulfill their demand from the 

emergency order. Its functional form in (2) is rooted on the empirical literature on the subject and satisfies 

several properties of interest. First, it is a function of the value of the rebate relative to the selling 

price, 

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m 1log . Second, the value of   falls between 0 and 1, but does not approach either value as 

0<r<p. Also, as m→ 
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1 , →1 and as m→∞, →0. Only in the absence of the rebate i.e. r=0, =0. 

This reflects empirical findings implying that, if there is no rebate, buying of lost sales will not take place, 

unless the product enjoys a monopoly. Arcelus, Gor and Srinivasan (2012) have developed a lost sale 
recapture model validating Bawa and Shoemaker (1989) that there is still some “exposure effect” to the 

original sale that leads some end-customers to purchase, even in the absence of a coupon, i.e. even when 

r=0, =0. On the other hand, in this model,  as  














p

r
1 →m, →1 indicating the possibility of every lost 

sale converting if the product is offered at a rebate equal to the selling price i.e almost absolutely free. 

 

Characteristic 3: The stocking factor, z 
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In (3), Φ and Λ represent the expected number of shortages and leftovers, respectively, as a result of 
demand fluctuations. The shortage level is expected to decrease with the rebate incentive. With respect to 

the stocking variable, z, it was introduced by Petruzzi and Dada (1999) and subsequently used by Arcelus, 

et al., (2005), among many others, as a replacement for another decision variable, namely the order 
quantity. It represents the expected level of leftover and shortages, generated by the demand uncertainty 

and by the retailer’s optimal policies. Its inclusion simplifies the interpretation of the findings of the 

current study and the derivations of the optimality conditions. 
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The retailer’s profit-maximizing objective 

The retailer profit function is decomposable into two parts, depending upon whether the retailer order 

quantity exceeds or understates the demand for the product. If the first, then q exceeds D and the retailer 

sells D units at p per unit, disposes of the rest at a salvage value of v per unit and incurs an acquisition 
cost of c for each of the q units ordered. If the second, q is below D, in which case the retailer buys and 

sells the q units at a profit margin of (p-c) per unit, acquires a fraction Ω of the shortage demand at a 

premium d per unit, sells it at (p-r), the regular selling price, p, net of the per unit rebate offered, r, and 
pays a shortage penalty of s per unit on the rest of the merchandise. Formally, the functional form of the 

retailer’s profit function, π(p,q,r), is as follows: 

  DqifqDsqDdcrpqcp

DqifDqvcqpDrqp


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),)(1()()()()(

),(),,(
       (4) 

The objective is to find the levels of p, q and r that maximizes E(p,q,r), the retailer’s expected profit. 

Using (3) and (4), it can be readily seen that E may be written as follows: 

 
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 First-order optimality conditions: 

To simplify the explanation, only the additive-error/linear-demand case will be discussed. The 

multiplicative case can be developed along the same lines. Let QrpiiEEi ,,,/'  be the first derivative 

of the expected profit with respect to each of the decision variables. Setting these derivatives to zero, we 

obtain the following first-order optimality conditions.  
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Where 
'
p and

'
r are defined in (3). The optimality conditions in (6) have straightforward economic 

interpretations. All represent tradeoffs between profit gains and losses associated with unit changes in p, r and 
q, respectively. With respect to the first, a one-dollar increase in price generates (i) a profit increase of $(g+μ) 

from the units sold: (ii) minus a loss of $
'
pg (p-c), from the decrease in demand caused by the price increase; 

(iii) minus an opportunity cost of the shortages not sold even with the emergency order; and (iv) opportunity 

cost on the decrease of the fill rate due to the price increase. As for the second, a one-dollar increase in the in 

the shortage rebate, r, results in (i) an increase in profits from the associated rise in the fill rate, 
'
r >0, from 

(3); and in (ii) an increase in the rebate costs from the back-logged end-customers purchasing from the 

emergency order. The third condition indicates that a one-dollar increase in the stocking factor results from the 

marginal profit changes in the expected leftovers, together with the opposite weighted marginal profits in the 

expected shortages, with the weights representing the percentage of returning and not returning customers.  

 

Numerical Analysis 

This section presents a numerical illustration of key properties of the model just described, to highlight 
the main features of the various solutions proposed in the paper. Given the central objective of the paper, 

our numerical analysis centers on the impact of fluctuations in base m of the fill rate function, upon the 

fill rate, Ω, and through it, upon the retailer’s profit-maximizing pricing, ordering, rebate policies. All 
computations were carried out with MAPLE’s Optimization toolbox.  
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Base-case numerical structure 

The starting point consists of two sets of examples that serve as the base-case for the analysis of this 

section. The first (second) set, denoted by AL (MI), assumes the deterministic demand, g, to be linear (iso-

elastic) and its error, additive (multiplicative), i.e. 

                   
demandtotalMIforp

demandtotalALforppD

,10,0,

,0,0,)(

100

1010

1 


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


             (7)  

For comparability purposes, this section operates with the parameter values of Patel and Gor (2013) to 

which suitable values for the remaining parameters have been added. These values appear in Tables 2. In 

this way, any sensitivity analysis can be carried out by adroit manipulation of the appropriate parameter 
values for any of the components of the base-case.  

Further for maximum comparability among probability distributions, all cases are related to a random 

variable uniformly distributed over the interval (-3,500, 1,500), for the AL demand model and (0.7, 1.1), 

for its MI counterpart. Either support interval describes the uniform distribution completely.  

Base-case numerical results 

Having described the nature of the numerical structure that gives rise to the parameter values of the AL 

and MI components of the base case, we now discuss the numerical results. Unless otherwise stated, we 
concentrate our remarks on the AL demand case. As mentioned latter on in this section, the results for the 

MI case can be interpreted in similar fashion.  

 

Table 2.Numerical Analysis: Base Case Optimal Policies 

Distribution   Support, mean and Standard deviation 

Uniform Distribution  

Additive Error and Linear Demand A >  -a 
Multiplicative Error and Iso-elastic demand 

A>0 

support [A,B] 

[-3500, 1500] , Mean = -1000, SD = 1440  
[0.7, 1.1],         Mean = 0.9 ,     SD = 0.06  

Additive Error Linear Demand 

Parameter values: γ0 =100000 ;  γ 1  =1500 ;  c = 35;  d = 3;  v = 10;  s = 3 

Profit  p  q  Λ  Φ  
333909 50.22  23276 444  836  

Multiplicative Error Iso-Elastic Demand 

Parameter values: γ0 = 500000000;  γ 1  = 2.5;  c = 35;  d = 3;  v = 10;  s = 3 

Profit  p  q  Λ  Φ  
356419  61.41 15496  988  713  

 

 

Numerical Example and Interpretations 

The optimal results using MAPLE for the fill rate model with varied bases on 














p

r
m 1log  are shown in 

Table 3. Both the cases Additive Error Linear Demand and Multiplicative Error Iso-elastic Demand are 
showcased to highlight the variations in the optimal solutions too. The following observations and 

interpretations are made: 

(a) The optimal policy for the fill rate model with m=2, as shown in row 1 of Table 3 in Additive Error 
Linear Demand case, consists of the retailer acquiring q*=23125 units at a unit cost of c=$35 and selling 

them at a unit price of p*=$50.25. With respect to the fill rate, approximately Ω
*
= 4% of the shortages are 

recaptured at an extra purchasing cost of d=$3.00 to the retailer, who allows a rebate of r*=$7.36 per unit 

backlogged. Afterwards, all unsold units, i.e. , will be assigned a unit shortage penalty 

of s=$3.  
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On the other hand, when demand falls below the q*=23,125 units ordered and all purchased at the cost of 

c=$35 per unit, D units are sold at the regular unit price of p*=$50.25 and the remaining, at the salvage 

value of v=$10.00 per unit.  

The resulting optimal policy is π*[p*, q*, r*] = $336828 [50.26, 22975, 5.08].  
As show in Table 2, these results contrast with the optimal solution for the AL certainty case of π*[p*; q*] 

=$333,909 [$50.22; 23,276]   

 
(b) Similar interpretation follows for the other models in the Additive Error Linear Demand case, where 

the base on 














p

r
m 1log  increases as shown in Table 2. The increase in the power of the fill rate function 

tends to increase the optimal order quantity and the rebate, whereas decreases the selling price and profits. 

(c) Table 3 also gives results for the MI case. Observe though that unlike its Additive Error Linear 

Demand counterpart, in this case, increase in the base of the fill rate function, tends to increase the order 

quantity and the rebate and also the selling price. Profits decrease with the increase in the base of the fill 
rate function. 

Table 3: Optimal Policies for lost sale recapture model with fill rate Ω= 














p

r
m 1log  

Additive Error Linear Demand 

m Profit p q r Ω Λ Φ 

2 335256 50.25 23125 7.36 0.04 321 1027 

3 334747 50.23 23183 7.36 0.02 367 950 

4 334570 50.23 23202 7.36 0.02 383 924 

5 334477 50.23 23213 7.35 0.02 392 911 

Multiplicative Error Iso-Elastic Demand 
m Profit p q r Ω Λ Φ 

2 359274 61.27 15351 12.53 0.12 726 1017 

3 358172 61.32 15411 12.55 0.07 828 889 

4 357795 61.34 15430 12.56 0.06 863 848 

5 357599 61.35 15440 12.57 0.05 881 827 

 

Sensitivity Analysis 
Table 4 describes the sensitivities of the optimal policies to the change in the salvage and shortage costs 

in the Additive Error and Linear Demand case. Corresponding results for the Iso-elastic demand and 

multiplicative error case can be easily computed. The primary objective to carry out the sensitivity 
analysis is to observe the directional change in the shortages and the leftover values. Observe that, even 

though, in all of the examples of Table 3, the expected number of leftovers, Λ
*
, never exceeds the 

expected shortages, Φ
*
, the relationship between these two is parameter specific, since sensitivity analysis 

shows that we can construct numerous examples, where Λ
*
> Φ

*
. 

 

Table 4:  Sensitivities to the salvage and shortage costs in Additive Error Linear Demand Case for 

m=1 
Linear Demand Additive Error Case for m=2  

v  s  
π

*

  p
*

  q
*

  r
*

  Ω
*

  Λ
*

  Φ
*

  

18  3  339232 50.32 23495 7.40 0.04 511 750 

19 3  339867 50.33 23556 7.40 0.04 546 709 

20 3  340542 50.34 23621 7.41 0.04 585 666 

21 3  341262 50.35 23690 7.41 0.04 627 622 

22 3  342030 50.36 23765 7.42 0.04 675 576 

23 3  342852 50.37 23847 7.42 0.04 728 529 
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Linear Demand Additive Error Case for m=2 
10  19 327213 50.36 23604 14.70 0.23 593 657 

10  20 326872 50.36 23626 15.14 0.24 607 643 

10  21 326544 50.37 23647 15.58 0.25 620 629 

10  22 326228 50.37 23667 16.02 0.26 633 616 

10  23 325923 50.37 23687 16.46 0.27 645 604 

10  24 325630 50.38 23706 16.90 0.28 657 593 

Next, we perform sensitivity analysis to the change in the support values [A,B] for the Uniform 

distribution for the fill rate model with base m=2. Similar sensitivities can be performed for various other 
values of m, as well as support structures. 

 

Table 5: Sensitivities to the Uniform Distribution Support Changes: CASE m=2 

 Linear Demand and Additive Error  
SUPPORT  Mean  

π
*

  p
*

  q
*

  r
*

  Ω
*

  Λ
*

  Φ
*

  

-5500,1500   -2000  310281 49.81 22549 7.15 0.04 438 1461 

-3500,1500   -1000  335256 50.25 23125 7.36 0.04 321 1027 
-1500,3500  1000  366432 50.92 24153 7.68 0.05 335 1003 

1500,3500   2500  406259 51.57  24972 7.99 0.05 139 392 

1500,5500   3500  412526 51.81 25452 8.10 0.05 282 778 

Iso-elastic Demand and Multiplicative Error 
.6,1.0  0.8  314599 61.68 13442 12.72 0.12 724 993 

.6,1.2  0.9  338223 63.00 14461 13.33 0.12 1077 1380 

.7,1.1  0.9  363087 60.83 15299 5.29 0.37 726 1017 

.8,1.2  1.0  403994 60.94 17263 12.38 0.11 728 1037 

.8,1.4  1.1  427276 62.03 18259 12.89 0.12 1084 1460 

 

Some Concluding Comments 
The primary contribution of this paper has been to consider a completely new lost sale recapture function 

than discussed in Patel and Gor (2013), the impact upon the ordering and pricing policies of a 

newsvendor-type, profit-maximizing retailer, faced with the possibility of backordering at least some of 
the shortages incurred from demand underestimation, by offering some rebate incentives for waiting. The 

backordering occurs through an emergency purchase of the items in question at some premium over the 

regular purchasing cost. In turn, the retailer offers to the end-customers left out of the initial sale a rebate 

incentive upon purchase of each item backordered, quite aware that not all the customers that could not 
buy in the first instant may avail themselves of the rebate offer and buy. The backlog fill rate, 

representing the probability of the end-customers returning to satisfy their unfilled demand, is modelled 

as a function of the size of the rebate offered relative to the selling price. Further, the policy decisions on 
the emergency order and on the rebate policy occur up front, along with the remaining ordering and 

pricing policies, rather than at the end of the season. Then the retailer has to decide, ahead of the 

realization of the demand, the profit-maximizing ordering, pricing and rebate policies. The decision 
variables are the selling price, the order size and the rebate offered as an incentive to satisfy at least a 

portion of the unfulfilled demand. 
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