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ABSTRACT 

An exact solution to the problem of an unsteady free convective flow of an electrically conducting 

viscous incompressible fluid past an infinite vertical porous plate in a rotating system taking into account 
the effect of Hall current is presented when the temperature as well as the concentration at the plate varies 

periodically with time. The flow is in presence of appreciable radiation and uniform transverse magnetic 

field and the fluid rotates with a constant angular velocity about the normal to the plate. The Magnetic 
Reynolds number is considered small enough to neglect the induced hydromagnetic effects. The 

expressions for the temperature, concentration, and velocity field, skin friction at the plate, the Nusselt 

number and Sherwood number are obtained in non-dimensional form. Detailed computations of the 

influence of Hartmann number, radiation parameter and Hall parameter on the variations in these fields 
are demonstrated graphically and physically interpreted. 
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INTRODUCTION 

Many natural phenomena and technological problems are susceptible to MHD analysis. Geophysics 
encounters MHD characteristics in the interactions of conducting fluids and magnetic fields, engineers 

employ MHD principle, in the design of heat exchangers pumps and flow meters, in space vehicle 

propulsion, thermal protection, braking, control and re-entry, in creating novel power generating systems 

etc. The study of MHD is quite important in the field of missile technology, aerodynamics since the 
temperature that occurs in such flight speeds are sufficient to dissociate or ionize the air appreciably and 

the motion of this ionized air may be controlled by applying a magnetic field suitably. The study of MHD 

is also relevant in medical science. For instance there have been researches on Arteriosclerosis (the cause 
of a cardiac arrest) where the effect of externally applied transverse magnetic field on a pulsalite flow in 

constricted arteries (tubes) is considered. When an electrically conducting fluid flows past a flat plate, its 

motion can be retarded by applying a transverse magnetic field and the Lorentz force acts as a resistance 

force in the direction opposite to the direction of the fluid velocity. Due to this the skin friction at the 
plate is reduced and hence the boundary flow may be controlled by transverse magnetic field. 

The geophysical importance of the flows in rotating frame of reference has attracted the attention of a 

number of scholars. Investigation of the combined effects of rotation and magnetic field on MHD flow 
has been an active topic of research because of its varied and wide applications in the areas of geophysics, 

astrophysics and fluid engineering. MHD in its present form is due to the pioneer contribution of several 

notable authors like Alfven (1942), Shercliff (1965), Ferraro and Plumpton (1966) and Crammer and Pai 
(1978). It was emphasized by Cowling (1957) that when the strength of the magnetic field is sufficiently 

large, Ohm’s law needs to be modified to include Hall current. Hall effects are significant when the 

density of the fluid is low and/ or the applied magnetic field is strong. It plays a vital role in determining 

flow features of the fluid flow problems. It is significant to study the combined effects of Hall current and 
rotation on MHD flow problems. Taking into consideration this fact, Ahmed and Kalita (2011), Sattar and 

Maleque (2000), investigated this fluid flow problem considering different aspects.  

The natural flow arises in fluid when the temperature change causes density variation leading to buoyancy 
forces acting on the fluid. Free convection is a process of heat transfer in natural flow. The heating of 

rooms and buildings by use of radiator is an example of heat transfer by free convection. Radiation is 

another process of heat transfer through electromagnetic waves. Radiative convective flows are 
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encountered in countless industrial and environment processes like heating and cooling chambers, 

evaporation from large open water reservoirs, astrophysical flows and solar power technology. Due to 

importance of the above physical aspects, several authors have carried out model studies on the problems 
of free convective flows of incompressible viscous fluid under different flow geometries taking into 

account of the thermal radiation. Some of them are Mansour (1990), Raptis and Perdikis (1999), 

Mbeledogu et al. (2007), Makinde (2005) and Sattar and Kalim (1996), Samad and Rahman (2006), 
Orhan and Ahmet (2008), Prasad et al. (2006), and Ahmed (2012).  

In this proposed work, the applied magnetic field, radiation and Hall current are taken into account in 

order to investigate the effects on the flow and transport characteristics. 

Mathematical formulation 
The equations governing the motion of an incompressible, viscous, electrically conducting radiating fluid 

in a rotating system in presence of a magnetic field are: 

Equation of continuity: 

.q 0 
 

            (2.1) 

Momentum equation: 

    2q
2 q r q. q p J B g q

t

 
              

           
      (2.2) 

Energy equation: 

 
2

2 r
p

qT J
C q. T k T

t y

  
       

   




        (2.3) 

Species continuity equation: 

  2C
q. C D q

t


   



 
           (2.4)                                                                             

Kirchhoff’s first law: 

.J 0 
 

           (2.5) 

General Ohm’s law: 

 e e
e

0 e

1
J J B E q B p

B e

  
        

 

     
        (2.6) 

Gauss’s law of magnetism: 

.B 0 
 

           (2.7) 

We now consider the unsteady flow of a viscous incompressible electrically conducting fluid. The flow 

occurs over an infinite vertical porous plate in a rotating system with constant suction taking into account 

the Hall current and radiation in presence of a uniform transverse magnetic field. Our investigation is 
restricted to the following assumptions: 

1. All the fluid properties except the density in the buoyancy force term are constants. 

2. The plate is electrically non-conducting. 

3. The entire system is rotating with angular velocity 


 about the normal to the plate. 

4. The magnetic Reynolds number is so small that the induced magnetic field can be neglected. Also the 
electrical conductivity of the fluid is reasonably low and hence the Ohmic dissipation may be 

neglected. 

5. The electron pressure ep  is constant. 

6.  E 0


 i.e. the electric field is negligible. 

7. 


 is so small that  r 
  

 i.e. the centrifugal force may be neglected . 
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We introduce a coordinate system  x, y, z  with x -axis is oriented vertically upwards along the plate 

and y -axis is taken normal to the plane of the plate and z -axis along the width of the plate as shown in 

figure1.The plate is subjected to a constant suction velocity
0v .  

Let ˆ ˆ ˆq iu jv kw  


be the fluid velocity, x y z
ˆ ˆ ˆJ J i J j J k  



 
be the current density at the point at the 

point  P x, y, z, t  and 0
ˆB B j


 be the applied magnetic field.  

 

 
Figure 1: Physical model of the problem 

The equation (2.5) gives 
yJ

0
y





 which shows that yJ  constant. Since the plate is electrically non-

conducting, y y 0
J 0


   and is zero everywhere in the flow and consequently the current density is given 

by x z
ˆ ˆJ J i J k 


.          (2.8) 

The assumptions V and VI lead the equation (2.6) to the following form 

   e e

0

J J B q B
B

 
    

   
          (2.9) 

where  e em     is the Hall parameter 

Equations (2.9) yield   

 0
x 2

B
J mu w

1 m


 


 ,          (2.10) 

 0
z 2

B
J u mw

1 m


 


 ,          (2.11) 

 

Since the plate is infinite in extent all physical quantities are the function of y  and t  only. With the 
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foregoing assumptions and under the usual boundary layer and Boussinesq approximation the equations 

(2.1) to (2.4) reduce to the following set of equations: 

 

0

v
0 which yields v v

y


  


         (2.12) 

 
     

22

0

2 2

Bu u u
v 2 w u mw g T T g C C

t y y 1 m
 

  
            

    
  (2.13) 

 
 

22

0

2 2

Bw w w
v 2 u mu w

t y y 1 m

  
      

    
      (2.14) 

2

r

2

p p

qT T k T 1
v

t y C y C y

  
  

     
         (2.15) 

2

2

C C C
v D

t y y

  
 

  
           (2.16) 

Where,    rq
4I T T

y



  


 

The appropriate boundary conditions are 

y 0 : u 0 , w 0 ,   i t

wT T T T e ,
      i t

wC C C C e 

       (2.17a) 

y  : u 0, w 0 , T T , C C        (2.17b) 

We now introduce the following non-dimensional quantities: 

0v
y y,
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v
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
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2

0
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2
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


  

 

The dimensionless forms of the equations (2.13) to (2.16) are 

 
2

2 2

u u u M
w u mw Gr Gm

t y y 1 m

  
        

   
     (2.18) 

 
2

2 2

w w w M
u mu w

t y y 1 m

  
     
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        (2.19) 

2

2

1
Q

t y Pr

   
   

  
          (2.20) 

              (2.21) 
 
The corresponding boundary conditions become 

i t i ty 0: u 0,w 0, e , e       
        

(2.22a) 

2

2

1

t y Sc y

   
 
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y : u 0,w 0, 0, 0               
(2.22b) 

Method of solution 

Introducing the complex variable q u iw, i 1     , the equations (2.18) and (2.19) transform to 

single partial differential equation 

 
2

2 2

q q q M
1 im i q Gr Gm

t y y 1 m

    
             

      (3.1) 

The corresponding boundary conditions become 
i t i ty 0:q 0, e , e                

(3.2a) 

y :q 0, 0, 0               (3.2b) 

In order to solve the equations (2.20), (2.21) and (3.1) under the boundary conditions (2.22), we assume 

     i t i t i t

0 0 0q q y e , y e , y e                                                                                        (3.3) 

Substituting (3.3) into the equations, we obtain 

           0 0 1 0 0 0q y q y A i q y Gr y Gm y         
     

(3.4) 

       0 0 0y Pr y i Pr QPr y 0        
       

(3.5) 

     0 0 0y Sc y i Sc y 0       
        (3.6)

 

The corresponding boundary conditions reduce to 

0y 0: q 0, 1, 1               (3.7a) 

0y :q 0, 0, 0               (3.7b) 

The solutions of the equations (3.4), (3.5) and (3.6) subject to the boundary conditions are as follows: 

  31 2 yy y

0 2 3 4q y A e A e A e
 

           (3.8) 

  1y

0 y e


             (3.9) 

  2y

0 y e


             (3.10) 

Hence the non dimensional velocity, temperature and concentration distributions are given by 
31 2 i t yi t y i t y

2 3 4q A e A e A e
    

           (3.11) 

1i t ye   
           (3.12)

 

2i t ye   
           (3.13) 

Splitting (3.11) into real and imaginary parts, we obtain 
72 4 X yX y X y

11 12 13u A e A e A e
 

           (3.14) 

72 4 X yX y X y

11 12 13w B e B e B e
 

           (3.15) 

Separating (3.12) and (3.13) into real and imaginary parts, the real part is given by 

 2X y

2e cos t Y y


             (3.16) 

 4X y

4e cos t Y y


   
         (3.17)

 

Skin-friction: 

The axial component of the skin friction at the plate is 

 
R Ix x x x

y 0

u
cos t sin t cos t

y


 
            

 
     

(4.1) 
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The transverse component of the shearing stress at the plate is 

 
R Iz z z z

y 0

w
cos t sin t cos t

y


 
            

 
     (4.2) 

R I

2 2

x x x    

 
R I

2 2

z z z    

 
I

R

x1

x

tan
 

   
    

I

R

z1

z

tan
 

   
  

 

 

 
R

I

x 9 2 2 9 11 4 4 11 12 7 7 12

x 9 2 9 2 11 4 11 4 12 7 12 7

X Y X Y X Y X Y X Y X Y

Y Y X X Y Y X X Y Y X Y

       

      
 

 

 
R

I

z 9 2 2 9 11 4 4 11 12 7 7 12

z 9 2 9 2 11 4 11 4 12 7 12 7

X Y X Y X Y X Y X Y X Y

Y Y X X Y Y X X Y Y X Y

       

      
 

Rate of heat transfer: 

The heat flux from the plate to the fluid in terms of Nusselt number Nu is given by 

 2 2

y 0

Nu X cos t Y sin t Nu cos t
y



 
          

 
                                                              

2 2

2 2Nu X Y 

 

1 2

2

Y
tan

X

  
   

   
Rate of mass transfer: 

The mass flux from the plate to the fluid in terms of Sherwood number Sh is given by 

 4 4

y 0

Sh X cos t Y sin t Sh cos t
y



 
         

 
 

2 2

4 4Sh X Y 

  

1 4

4

Y
tan

X

  
   

   
The constants 1 2 3 1 2 3 4 11 12 13 11 12 13 1 12 1 12, , ,A ,A ,A ,A ,A ,A ,A ,B ,B ,B ,X ,...,X ,Y ,...,Y    are not shown 

here for the sake of brevity. 
 

RESULTS AND DISCUSSION 

In order to get clear insight of the physical problem, numerical computations from the analytical solutions 

for the representative temperature field, concentration field, velocity field, the co-efficient of skin friction, 
the rate of heat transfer at the plate in terms of Nusselt number and the rate of mass transfer in terms of 

Sherwood number have been carried out by assigning some arbitrarily chosen specific values to the 

physical parameters involved in the problem, the normal coordinate y and time t. Throughout our 
investigation, the value of Pr have been kept fixed at 0.71, both the values of Gr and Gm are fixed at 5 and 

2 respectively as the numerical computations are concerned. We recall that Pr =0.71 corresponds 

physically to air. The numerical results computed from the analytical solutions of the problem have been 
displayed in figure 2-7. 

Figures 2 and 3 present how the fluid velocity is affected by radiation and applied magnetic field 

respectively. These two figures uniquely show that an increase in the radiation parameter and Hartmann 

number results in a steady decrease in the fluid velocity thereby reducing the thickness of the velocity 
boundary layer. These two figures further reveal that the fluid velocity first increases in a thin layer 

adjacent to the plate and there after it decreases asymptotically as we move away from the plate indicating 
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the fact that the buoyancy force has a significant effect on the flow near the plate and its effect is nullified 

in the free stream. 

 
Figure 2: Velocity versus y under the effect of radition 

 

 
Figure 3: Velocity versus y under the effect of applied magnetic field 

 

Figure 4 corresponds to the temperature distribution   against y under the influence of Q shows an 

opposing influence on   indicating the fact that the fluid temperature falls steadily for high radiation. It is 

y → 



u, 

w 

u 

w  

u,

w



 

M=3, M=5, M=7 

y → 
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further noticed from these figures that as expected the fluid temperature asymptotically falls from its 

maximum value at y 0  to its minimum value at y . 

 
Figure 4: Temperature versus y under the effect of radiation 

 

Figures 5 and 6 demonstrate the effect of the Hartmann number M and Radiation parameter Q on the skin 
friction at the plate. Both the figures indicate that the magnitude of shear stress at the plate is considerably 
decreased with the increase in M and Q. The effect of Hall parameter is immaterial on the axial 

component of the skin friction at the plate whereas the magnitude of the transverse component rises for 

increasing values of Hall parameter.  

 

 
Figure 5: Shearing Stress versus Hall parameter under the effect of radiation 




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Figure 6: Shearing Stress versus Hall parameter under the effect of applied magnetic field 

 

The effect of the radiation parameter on the co-efficient of the rate of heat transfer in terms of the Nusselt 
number Nu have been displayed in figure 7. This figure predicts that magnitude of Nu is constantly 

decreased for increasing values of radiation parameter.  

 

 
Figure7: Rate of Heat transfer versus Hall parameter under the effect of radiation 
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Conclusions 

Our investigation may be summarized to the following conclusions: 

i) The imposition of the transverse magnetic field retards the flow. As a consequence of this, the growth 
of thickness of the velocity boundary layer is prevented to some extent which in turn stabilizes the flow. 

ii) High radiation causes the fluid temperature to fall and thereby reduces the thickness of the thermal 

boundary layer. 
iii) Magnitude of shear stress at the plate is considerably decreased due to application of transverse 

magnetic field. 

iv) High radiation leads the substantial fall in the heat transfer rate.  

Nomenclature 

B


 is the Magnetic induction vector, 

0B  is the strength of the applied magnetic field, 

pC  is the Specific heat at constant pressure, 

C  is the species concentration, 

D  is the coefficients of mass diffusivity, 

E


 is the electric field, 

g


 
is the gravitational acceleration vector, 

Gr  
is the Grashof number for Heat transfer, 

Gm  
is the Grashof number for Mass transfer, 

J


 is the current density vector, 

k  is the thermal conductivity, 

M is the Hartmann number, 

Pr is the Prandtl number, 

p is the pressure, 

q


 
is the fluid velocity vector, 

Q is the radiation parameter, 

rq  is the radiative heat flux, 

t  is the time, 

  
is the fluid density, 

  
is the co-efficient of viscosity, 

  is the electrical conductivity, 


 
is the viscous dissipation of energy per unit volume, 

  
is the co-efficient of volume expansion for heat transfer, 


 
is the co-efficient of volume expansion for mass transfer, 

  is the non-dimensional temperature, 

 is the non dimensional concentration, 
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