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ABSTRACT 
The effect of thermal field and magnetic field on the propagation of edge waves in a homogeneous, 
isotropic plate of finite thickness under initial compressive hydrostatic stress has been studied in the 

context of coupled thermoelasticity. The frequency equation of phase velocity of the waves at the edge of 

a plate of finite thickness has been derived and is approximated for small thickness of the plate. The 

numerical values of phase velocities of the edge waves have been calculated for different values of initial 
stress parameters and thermoelastic coupling parameter as well as magnetic pressure number and the 

results obtained are shown graphically.  
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INTRODUCTION 
When an elastic body is deformed, waves propagate inside and on the edge or surface of the body. The 

waves, which propagate in the plate of finite thickness, are called edge waves. If the plate is of infinite 

thickness, these waves are called surface waves. The propagation of elastic waves at an edge of a medium 
is in general more complex. Due to reflection and refraction of waves at the edge, the velocity of the wave 

will be different at the edge than that moving inside. 

Kumar (1959) obtained the phase velocities of edge waves without considering the initial stress. Initial 
stresses develop in the medium due to various reasons, and it is of paramount interest to study the effect 

of these stresses on the propagation of elastic waves. A lot of systematic studies have been made on the 

propagation of elastic waves. Biot (1965) showed that the acoustic propagation under initial stresses 

would be fundamentally different from that under stress free state. The influence of initial stresses on the 
propagation of edge waves has been studied by Das and Dey (1970). Lokenath and Roy (1988) studied 

the propagation of edge waves in a thinly layered laminated medium with stress couples under initial 

stresses. Based on Biot’s theory, Montanaro (1999) investigated the isotropic linear thermoelasticity with 
hydrostatic initial stress. Abraham and Norris (2000) discussed the existence of the edge waves in a plate 

under a particular physical condition. Dey and De (2009) showed the effect of initial stress on the velocity 

of propagation of edge wave in an incompressible anisotropic initially stressed plate of finite thickness, 
the velocity has been computed for various initial stress parameter and different anisotropy ratio and some 

particular cases have been discussed to get the velocity in an initially stress free and isotropic medium. 

Since deformation of a body can give rise to a temperature variation in space and time, it is important to 

study the edge wave propagation in presence of thermal field as well in the light of theory of 
thermoelasticity. The coupling between thermal and strain fields give rise to the coupled theory of 

thermoelasticity. In the theory of thermoelasticity the governing equations are hyperbolic equation (wave 

type) of motion and parabolic equation (diffusion type) of heat conduction. When an isotropic elastic 
medium is subjected to a mechanical and thermal disturbance the effect of both the displacement field and 

temperature field are felt at infinite distance from the source of disturbance implying an infinite speed of 

propagation which is physically impossible. In view of this drawback Lord and Shulmon (1967)  

modified Fourier Heat conduction equation and the constitutive equations by introducing linear harmonic 
to the thermal waves and the heat flux rate term to formulate the generalized theory of thermoelasticity. 
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Introducing the concept of relaxation time of thermoelastic process to the generalized theory of heat 

conduction equation, Lord and Shulmon (1967) gave a hyperbolic type of heat transport equation. These 

equations include the time needed for acceleration of heat flow and take into account the coupling 
between temperature field and strain field for isotropic materials. Later the hyperbolic heat conduction 

equation was further modified by Green and Lindsay (1972) who introduced the concept of two relaxation 

times of the thermal process along with the temperature rate, among other constitutive variables. These 
rigorous theories have been found to be more realistic than the conventional theories and are in good 

agreement with the experimental results. Chandrasekharaiah (1986) referred to this wave like thermal 

disturbance as “second sound’’. A brief review of different thermoelastic models can be found in the 

paper of Hetnarski and Ignaczak (1999). 
In the context of generalized theory of thermoelasticity, Ahmed (2000) has shown how the phase velocity 

of thermo elastic waves is influenced by the nature of the solid medium and the initial stress present in it. 

The propagation of Surface waves under initial stress in presence of temperature field has been studied by 
Addy and Chakraborty (2005“a”) and the propagation of Gravity waves in a liquid under the effect of 

temperature field and initial stress has also been studied by Addy and Chakraborty (2005“b”). Recently S. 

Gupta et al., (2010) discussed the propagation of Surface waves (S-waves) in a non-homogeneous 
anisotropic incompressible and initially stressed medium. The reflection and refraction of the elastic 

waves under the generalized theory of thermoelasticity under the influence of initial stress has been 

discussed by Chakraborty and Singh (2011). 

Magnetic field also influences the wave propagation in elastic medium. Taking into account, the effect of 
magnetic field and thermal field, Abd-alla (2000), Ezzat and Othman (2000), Ezzat and El-karmany 

(2003), Acharya and Mondal (2006), Othman and Song (2008), Abo-dahab and Singh (2009), Kumar and 

Devi (2010) and many others have studied problems of elastic waves. But none considered the effect of 
initial stress. 

The effect of magnetic field in presence of initial stress has been discussed by very few authors such as 

Abd-Allaa et al., (2009), Gehlotet al., (2011), Singh et al., (2012). 

In the present paper, the effect of thermal field and initial compressive hydrostatic stress on the 
propagation of edge waves in a homogeneous, isotopic plate of finite thickness has been discussed in 

presence of magnetic field. The frequency equation for the edge waves has been obtained. The frequency 

equation is approximated and analyzed numerically to observe the effect of initial stress parameter, 
thermoelastic coupling parameter and magnetic pressure number, on the phase velocity of edge waves.  

Definition of the Problem 

We consider a homogeneous, isotropic plate of infinite length and thickness H , under uniform initial 

compressive hydrostatic stress P , at an initial temperature 0T  as shown in figure 1.  

 
Figure1: A homogeneous plate of infinite length and thickness ,H under initial compressive 

hydrostatic stress P  
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Formulation of the Problem 
Consider a three-dimensional Cartesian co-ordinate system. The origin of the co-ordinate system is 

located at the middle of the plate. The x-axis is taken in the direction of wave propagation and y-axis is 

taken vertically upwards. The plate is permeated into a uniform magnetic field  30 ,0,0 HH 


 which is 

parallel to z-axis.  

Basic Equations 

The dynamical equations of equilibrium under initial hydrostatic stress given by Biot (1965), taking into 
account the presence of Lorentz force are 
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Where 2211, ss and 12s  are incremental thermal stress components. The first two are principal stress 

components along x- and y-axes, respectively and last one is shear stress component in the xy plane.
  is 

the density of the material, vu  and are the displacement components along x- and y- axes, respectively. 1F

and 2F are Lorenz force components along x- and y- axes, respectively. 

The stress-strain relations with incremental isotropy given by Biot (1965) are 
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Where   tt  ,23  is the coefficient of linear expansion of the material and ,  are Lame’s 

constants. T is the incremental change of temperature from the initial state and 1t is second relaxation 

time. 

The incremental strain components given by Biot (1965) are 
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Where xxe and yye are the principal strain components and xye is the shear strain component. 

The heat conduction equation given by 
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Where S is the specific heat per unit mass at constant strain,   is the thermal conductivity of the material,
 

0t  is the first relaxation time and ij  is kronecker delta.
     Taking into account the absence of displacement current, the simplified linear Maxwell equations of 

electrodynamics of slowly moving medium having perfect electric conductivity are 
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Where 

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Here  


h and 


E  are the induced magnetic field and induced electric field, respectively, 


J is the electric 

current density vector, 


u  is the displacement vector and e  is the magnetic permeability. 

The equation of Lorentz force is 
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Substituting (6) in (5) we get the value of 


J  and putting the value of 


J in (7), we get the components of 

Lorentz force as 
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Maxwell stress components are given by  
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Equation (9) gives 
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Solution of the Problem 

Equation (1) with the help of (2), (3) and (8) take the forms 
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In Lord-Shulman theory 1  and 0  ,0 01  ijtt  . 

In Green-Lindsay theory 0 and 0  01  ijtt  . 

Here we use classical dynamical coupled theory in which 0 and 0,0 10  ijtt  . So Equations (4) and 

(11) change to 
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The displacement components vu  and may be expressed in terms of the potential functions  and  as: 
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From equations (13) and (14), we get the following wave equations: 
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Eliminating 𝑇 froms (15a) and (16), we get 

0
1 2

0
2

2

2

2
1

2 













































tt

S

tc







                      (17a) 

Where
 

 2
3

2
32

1
2

,
2

H

H
c

e

e














  and 




 0

0

T


 

Equation (15b) takes the form 
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For plane harmonic waves moving along the x- axis, the solutions of (17a) and (17b) can be taken in the 

form 
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Where   is frequency of oscillation and   is the wave number 

Putting (18a) in (17a) and (18b) in (17b), we obtain the following equations: 
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2

2
2

2
1

2
1  and kk    

Boundary Conditions 

The boundary conditions on the plane
2

H
y  are given by 

01212 



 T

x

v
Psf x              (26a) 

02222 



 T

x

u
Psf y              (26b) 

0



Th

y

T
               (26c) 

Where yx ff   and are incremental boundary forces per unite initial area and h is the ratio of heat transfer 

coefficient and thermal conductivity. 

Using (2),(10),(14),(23a) and (23b), the first boundary condition (26a) becomes 

            0sin  12sin  12sin  12 12

2

2211 







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


                   (27a) 

Using (2),(10),(14),(23a),(23b) and (25), the second boundary condition (26b) becomes 

            0 cos 12 cos 12 cos 12 1122
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      (27b)   
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Using (25) and 0h , i.e. for the case thermal insulation, the third boundary condition (26c) becomes 

 

    0sin  sin  222111  BhAh                         (27c) 

Where



2

P
 , is the initial stress parameter in dimensionless form and .

2

H
   

Frequency Equation 

Eliminating the constants CBA  and  , from (27a), (27b) and (27c), we get  
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



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                         (28) 

Expanding the determinant (28) and simplifying, we get 
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Also 
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1
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Expressing the quantities 2121  and ,,   in terms of quantities 2 1  and   and using (31),we find that 

(29) reduces to the form: 
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Where
2

2
2




c

 
From (20), we get 

  qkkqkk 22
2

2
1

22
2

2
1  and 1                                               (33) 

 

Using (30) and (33), we get 
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Where
2
1cS

f



 , is the reduced frequency.  

Putting (34) in (32), we get a frequency equation of Edge waves:  
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Equating imaginary parts of (35), we get 
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Putting
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2
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2
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1 
, (36) reduces to  
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Where
2
2

2

c

c
V  represent the phase velocity of Edge waves  
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
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H . Here 20 ,,, cccR AH , magnetic pressure number, Alfven 

wave velocity, isothermal dilatational and rotational wave velocity respectively. 

 

RESULTS AND DISCUSSION 

The data for aluminium is used for numerical calculations. Following (Abd-alla et al., 2003), we take the 
following material constants for aluminium: 

1-1-1-1-

-3-16-29-29

K Wm237,KKg J 900

,Kgm 2700,K1023 ,Nm 1043.26 ,Nm 1075.57
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 





S

t

 
The numerical values of phase velocity of edge waves have been computed from the equation (37), for 

different values of initial stress parameter, magnetic pressure number and thermoelastic coupling 
parameter. These results have been plotted in the following graphs:

 Thermoelastic Coupling Parameter is Kept Constant 

(a) Variation of phase velocity with initial stress parameters for different values of magnetic pressure 

number: 
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Figure 2: Variation of phase velocity (V ) of edge waves with initial stress parameter ( ) for 

different values of magnetic pressure number ( HR ) keeping thermoelastic coupling parameter 

constant ( 03.0 ). 

Figure 2 shows that the phase velocity of edge waves decreases sharply with the increase in the initial 

stress parameter. Phase velocity is also higher for higher magnetic stress parameter. 
(b) Variation of phase velocity with magnetic pressure number for different values of initial stress 

parameters: 

 
Figure 3: Variation of phase velocity (V ) of edge waves with magnetic pressure number ( HR ) for 

different values of initial stress parameter ( ) keeping thermoelastic coupling parameter constant (

03.0 ).  

 
Figure 3 shows that the phase velocity of edge waves increases slowly with the increase in the magnetic 

pressure number. Graph also shows that the magnitude of phase velocity decreases as the initial stress 

parameter increases. 

Magnetic Pressure Number is Kept Constant 
(a) Variation of phase velocity with initial stress parameters for different values of thermoelastic coupling 

parameter: 
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Figure 4: Variation of phase velocity (V ) of edge waves with initial stress parameter ( ) for 

different values of thermoelastic coupling parameter (  ) keeping magnetic pressure number 

constant ( 4.0HR ).  

Figure 4 shows that the phase velocity of edge waves decreases sharply with the increase in the initial 

stress parameter and effect of thermal variation on the phase velocity is negligible. 
(b) Variation of phase velocity with thermoelastic coupling parameter for different values of initial stress 

parameters: 

 
Figure 5: Variation of phase velocity (V ) of edge waves with thermoelastic coupling parameter (  ) 

for different values of initial stress parameter ( ) keeping magnetic pressure number constant (

4.0HR ).  

 

Figure 5 shows that the phase velocity of edge waves practically remains constant with the increase in the 
thermoelastic coupling parameter. Moreover the magnitude of phase velocity is less when initial stress is 

more. 

Conclusion 
From the above study, it can be concluded that the initial compressive hydrostatic stress as well as the 

magnetic field have significant effect on the phase velocity of edge waves. This study also shows that the 

thermoelastic coupling parameter has a small influence on the phase velocity of edge waves. This study 
may be applied to solve problems where the factors like elastic field, thermal field, magnetic field and 

initial stress coexist such as the seismic wave propagation inside the earth, geophysics, nuclear devices 

etc. 
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