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ABSTRACT

In this paper, we study the unsteady free and forced convective flow of a viscous incompressible
electrically conducting fluid through a porous medium of variable permeability between two long vertical
non-conducting wavy channels is by using Galerkin Method. The effect of various physical parameters on
the stream function and temperature of fluid are calculated numerically and are shown through graph. The
numerical values of the skin friction and Nusselt number are calculated for various parameters.
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INTRODUCTION

This topic has been discussed by many researchers because of their application to transpiration cooling of
reentry vehicles, racket boosters, cross — hatching on ablative surface and film vaporization in combustion
chambers. Probably Benjamin (1959) was the first to study the problem of a flow over a wavy wall. Lyne
(1971) investigated the steady steaming generated by an oscillatory viscous flow over a wavy wall under
the assumption that the amplitude of the wave is smaller than the stokes layer thickness by the method of
conformal transformation. The problem of free convection in an incompressible viscous fluid bounded by
long vertical wavy wall and a parallel flat wall has been investigated by Vajravelu and Sastri (1978).
Vajravelu and Sastri (1980) studied the problem of natural convection heat transfer in a wavy channel.
The problem of non — linear convection heat transfer and fluid flow, induced by traveling thermal waves
with the different configuration of channel has been investigated by Vajravelu and Debnath (1986).
Vajravelu (1989) studied the combined free and forced convection in hydro magnetic flow in a vertical
wavy channel with the traveling thermal waves. Purohit and Patidar (1998) studied the problem of viscous
incompressible fluid in porous medium confined between two long vertical wavy walls. The problem of
unsteady free convective MHD flow of a viscous in compressible fluid in porous medium between two
long vertical wavy walls was discussed by Sarangi and Jose (2004). Sarangi and Sharma (2007) studied
the unsteady free and forced convective flow of a viscous incompressible electrically conducting fluid
through a porous medium of variable permeability bounded by vertical channels by using multi —
parameter perturbation technique.

The aim of the present paper is to investigate the combined free and forced convection unsteady
convection in MHD flows through porous medium of variable permeability bounded by vertical wavy
channels with thermal waves using Galerkin method.

Formulation of the Problem

Consider the two dimensional unsteady combined convective heat transfers and MHD flow of a viscous
incompressible fluid through a porous medium of variable permeability between long vertical wavy walls
with travelling thermal waves. Let X1-axis be in the vertical upward direction and Yl-axis be
perpendicular to it. The walls are parallel to the direction of buoyancy and the wall surfaces are
represented by yl = (d=a cos Al x1) and yl = [-d=a cos (Al x1+@)] .The permeability of the porous
medium is considered to be the form K’ = K1 [1+ € cos (Al xI + ol t1)], where K1 is the mean
permeability of the porous medium, &(<< 1) the amplitude of permeability variation, @l and Al the
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perturbation parameters. The fluid properties are assumed to be constant. On neglecting the viscous
dissipation, the work done by pressure and induced magnetic field and on applying the Boussinesq
approximation the equation governing motion and heat transfer are
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where ul, v1 are velocity components along X1 and Y1 axis, T1 is the fluid temperature,

pl, Q, K1, t1 By, Cp, 9, 5, p, 1, B, T1 are pressure, constant heat addition / absorption, mean permeability
parameter, time, applied magnetic field, specific heat at constant pressure, acceleration due to gravity,
coefficient of electric conductivity, density, viscosity, volume expansion, wall temperature respectively.
The boundary conditions are

ul=v1=0,Tl="T11[1+ecos(Axl+altl)|=T1 at y=d-+acos(Alxl)

ul=v1=0,Tl="T12[1+ecos(Mxl+awltl)|=T2 at y=—d+acos(Alxl+0) (5)

The boundary conditions indicate that there are traveling thermal waves moving in the negative X1-
direction.
Introducing non-dimensional quantities
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in to the equations (1) to (5), we get

2 2

8_u+ua_u+va_u:_@+ 8_[21+8_12J ~M?u+GT - u (6)
a  ox oy ox \ox® oy K(1+&cos(Ax +ot))
oN ov ov op (v o%v v
—+U—+V—=——+ >+t — |- (7
ot ox oy oy (ox' oy') K(L+ecos(Ax+ot))

oT oT oT o°T o°T
Prl —+U—+V— |=| —5+— |ta (8)

ot ox oy oxX° oy

90



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2013 Vol. 3 (4) September-December, pp.89-97/Sattar

Research Article

Where v, Pr, a, M, G, &, T2 are kinematic viscosity, Prandtl number, heat source / sink parameter,
Hartmann number, Grashof number, dimensionless amplitude parameter, wall temperature.
The corresponding boundary conditions are

=0 at y=l+ecos(Ax)
1 at y=-l+ecos(Ax + 0) 9)

. . 0 . .
Introducing the stream function U = y defined as u = —[%’j and v = (8—\”) in to the equations (6)
X

to (9), we get
Wyyt + Wxxt _\qujxyy _\Vy\Vxxx + Wnyyy + WxWxxy = Wxxxx + 2\Vxxyy + \ljyyyy

Wxx i(AX+0o! Wx - i(AX+o 4 i(AX+of (10)
+M?y, - GT, —?(1—8e (- t>)+?(gme g t>)—?W(1—ae e
Pr(T, —w,T, +y,T,) =T, + T, +a (11)
The corresponding boundary conditions are
W, =Wy, =0,T=0 at y=I+ecos(rx)
V,=Wv,=0T=1 at y=-l+ecos(Ax+ 0) (12)
Assume
(%, Y,1) = o (y) + (e )y, (y)
T(xyt) =T, (y)+ (aei(““"t) )Tl (y) (13)

On substituting the equation (13) in to the equations (10) to (12) and equating the coefficient of like
powers of &, we get
Zeroth order equations

iv " ’ WO
~M?y! -GT, -2=0
\VO WO 0 K (14)
T/ +oa=0
(15)
The corresponding boundary conditions are
Vo=0,y,=0To=0 at y=1
V=0, y,=0To=1 at y=-1 (16)
The equations (14) and (15) are ordinary differential equations and are solved by using Galerkin method
under boundary conditions (16). The solutions are given by

T =201-y) (17)
Wo =by (2y* -y* -1) (18)

First order equations

vy - iw(wl" -2y, ) +idyy (\vl" - szl) —idyy, =200 + 1ty

91



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2013 Vol. 3 (4) September-December, pp.89-97/Sattar

Research Article

}\‘ \Ij \Ij " \lj "
_M — GT 4+ — 1 X1 =+ o = O 19
\Vl K K K (19)
T = PrioT, +Prir (v, T, —y,Ty ) -27T, =0 (20)

The corresponding boundary conditions are
\yl':—\y "oy, =0,T,=-T, e at y=1
v, =y, ey, =0T, =T, at y=-1 (21)
Assume
v (Y) = Wy + Ay,
T, (y) =T, +AT,

On substituting the equation (22) in to the equations (19) to (21) and equating the coefficient of like
powers of A, we get
Zeroth order equations

(22)

v - " " r Y § \\J "
vy —ioy,, —M?y,, —GT, - |1<° +?° =0 (23)

T, —PrioT, =0 (24)
The corresponding boundary conditions are

WlO' =, " 7'“)t,\|jlo =0, T10 = T' et gt y=1

\I’ = _‘Vo gy ’WlO =0,T, =-T, ‘) at y=-1 (25)

First order equations
iv—i ﬂ+i ’ n_i m_Mz rr_GTr_\I/ll ~0 26
Y —loyy Ty Wy — 1YWy Yu 1 K (26)
T —PrioT,, +Pri{ v, Ty — vy, Ty ) =0 (27)

The corresponding boundary conditions are
\Vh: O, \0 :O, T11:0 at y= 1
v,;=0, ¥y, =0,Ty=1 at y=-1 (28)

The equations (23), (24) and (26),(27) are ordinary differential equations and are solved by using
Galerkin method under boundary conditions (25),(28). The solutions are given by

T ( ) (aythS 2 lOllJ + I (ay‘tloﬁ % thlZ J (29)

Wio (¥)=[ Ls (3" —4y° +y)+ 1y (y* —2y° +1) 41y (3y* ~4y* +1) |

+i[|2l (—3y5 +4y° —y)+ lg (y4 -2y? +1)+ l,, (—3y4 +4y° —1)]
(30)
T (Y) = (tys +itye ) (¥ —1) (31)
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Wll(y):(|31+i|32)(1_2y2 +y4) (32)
Substituting the equations (29) to (32) in to the equation (22), we get

v, (y)= [Ilg (3y° —4y® +y)+1y; (y* —2y% +1)+ 1, (3y* —4y" +1)+ My, (1-2y% +y* )}

+i [IZl (—3y5 +4y° — y) + 1, (y4 - 2y? +1) +1,, (—Sy4 +4y? —1) +Al, (1— 2y° +y* )]
(33)

2 2

o . o
T, (y) = (ay‘thS + % Cions + Mg ()/2 _1)J +1 (aytme + % L2 + Aty (y2 _1)j (34)

Substituting the equations (33) & (34) in to the equation (13), we get Stream function U = y(y) and
Temperature T(y)

w(y)="b,(2y* - y* —1)+e[ cos(Ax +ot) +isin (Ax + ot) |
1o (3y° —4y* +y) + 1, (¥* =2y +1) + 15 (3y* — 4y +1) + Mgy (1-2y* +y* )]
Hi[ Ly (-8y° +4y° =y )+ Ly (y* = 2y° +1)+ 1, (8" +4y* ~1)+ A, (1-2y° +y*) |
(35)
T(y) :%(1—y2)+g[cos(kx+mt)+ isin (Ax + ot) |

(36)
ay? . ay?
{[aytlos + ;/ Lions + Mg (y2 _1)j +1 (O(’ytm(i + ; Liore + Ay (yz _1)]}

Constants expressions are not presented here for sake of brevity.
Skin Friction. The skin friction coefficients at the walls are
T11=8by + 24b0800$(}\‘x) —gcos(Ax + (Dt))(36|19 + 817 + 28l + 87»131) —
esin(Ax + ot))(361; - 8lig + 28l - 87\.132) (37)

T22 = 8hg + 24bgecos(Ax + 0) — ecos(Ax + wt))(-36l19 + 8ly7 + 28150 + 8Al3;) +
esin(Ax + ot))(361y; + 8lig - 28Iy, - 87\.132) (38)

Nusselt number. The Nusselt number at the walls are

N1l = - a — agcos(Ax) + £cos(Ax + ot)(atye; + 2At1g) - sin(Ax + wt)(oitipp + 2Atsg)
(39)

N22 = o — agcos(Ax + 0) + ecos(Ax + wt)(otioy + 2Atsg) - esin(AX + wt)(atygy + 2Atsg)
(40)

RESULTS AND DISCUSSION

Figure 1: In the presence of heat source: The Stream function decreases due to increase in Prandtl
number, Heat source parameter. The Stream function increases due to decrease in Grashof number and
increase in Hartmann number, frequency parameter. The behaviour of Stream function is reversed when y
> 0.
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Figure 2: In the presence of heat sink: The Stream function increases due to increase in Prandtl number
and decrease in Heat sink parameter. The Stream function decreases due to decrease in Grashof number
and increase in Hartmann number, frequency parameter. The behaviour of Stream function is reversed
when y > 0.
Figure 3: In the presence of heat source: The Temperature of fluid decreases due to increase in Heat
source parameter. The Temperature of fluid increases due to increase in Prandtl number, frequency
parameter. The Grashof number, Permeability parameter and Hartmann number have negligible effect on
Temperature of fluid. The behaviour of Temperature of fluid is reversed when y > 0.
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Figure 2: Stream function distribution U versus Y
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Table 1: Values of Skin Friction coefficient and Nusselt number at the walls in the presence of heat

source

Pr o G M K (0] T11 T22 N11 N22

0.7 5 10 2 05 10  3.335083 3.644414 -4.845712 5.154288
7 5 10 2 05 10  3.483986 3.793316 -6.598349 3.401651
0.7 10 10 2 05 10 6.66909 7.28775 -9.690201 10.309799
0.7 5 5 2 05 10 1.667676 1.822341 -4.846018 5.153982
0.7 5 10 4 05 10 1.966239 2.14478 -4.846114 5.153886
0.7 5 10 2 4 10  3.689394 4.03579 -4.845477 5.154523
0.7 5 10 2 05 20  3.368543 3.259071 -5.155736 4.844264
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Table 2: Values of Skin Friction coefficient and Nusselt number at the walls in the presence of heat
sink

Pr o G M K ® T11 T22 N11 N22

0.7 -5 10 2 05 10 -3.33616 -3.645491 4.846935 -5.153065
7 -5 10 2 0.5 10  -3.484212 -3.793543 6.598132 -3.401868
0.7 -10 10 2 0.5 10 -6.673398 -7.292058 9.695094 -10.304906
0.7 -5 5 2 0.5 10 -1.667946 -1.822611 4.846629 -5.153371
0.7 -5 10 4 0.5 10 -1.96646 -2.145009 4.846533 -5.153467
0.7 -5 10 2 4 10  -3.69095 -4.037275 4.844717 -5.15283
0.7 -5 10 2 05 20 -3.368782 -3.25931 5.156579 -4.843421

Figure 4: In the presence of heat sink: The Temperature of fluid increases due to decrease in Heat sink
parameter. The Temperature of fluid decreases due to increase in Prandtl number, frequency parameter.
The Grashof number, Permeability parameter and Hartmann number have negligible effect on
Temperature of fluid. The behaviour of Temperature of fluid is reversed when y > 0.

Table 1: In the presence of heat source: The Skin Friction coefficient at the wall y = 1 + € cos(Ax)
increases due to increase in Prandtl number, Heat source parameter, Permeability parameter, Frequency
parameter. The Skin Friction coefficient at the wall y =1 + & cos(Ax) decreases due to decrease in Grashof
number and increase in Hartmann number. The Skin Friction coefficient at the wall y = -1 + € cos(Ax + )
increases due to increase in Prandtl number, Heat source parameter, Permeability parameter. The Skin
Friction coefficient at the wall y = -1 + ¢ cos(Ax + 0) decreases due to decrease in Grashof number and
increase in Hartmann number, Frequency parameter.

The Nusselt number at the wall y = 1 + & cos(Ax) decreases due to increase in Prandtl number, Heat
source parameter, Hartmann number Frequency parameter and decrease in Grashof number. The Nusselt
number at the wall y = 1 + € cos(Ax) increases due to increase in Permeability parameter. The Nusselt
number at the wall y = -1 + & cos(Ax + 0) decreases due to increase in Prandtl number, Hartmann number,
Frequency parameter and decrease in Grashof number. The Nusselt number at the wall y = -1 + & cos(Ax
+ 0) increases due to increase in Heat source parameter, Permeability parameter.

Table 2: In the presence of heat sink: The Skin Friction coefficient at the wall y =1 + & cos(Ax)
decreases due to increase in Prandtl number, Permeability parameter, Frequency parameter and decrease
in Heat sink parameter. The Skin Friction coefficient at the wall y = 1 + & cos(Ax) increases due to
decrease in Grashof number and increase in Hartmann number. The Skin Friction coefficient at the wall
y = -1 + g cos(Ax + 0) decreases due to increase in Prandtl number, Permeability parameter and decrease
in Heat sink parameter. The Skin Friction coefficient at the wall y = -1 + & cos(Ax + 0) increases due to
decrease in Grashof number and increase in Hartmann number, Frequency parameter.

The Nusselt number at the wall y = 1 + & cos(Ax) increases due to increase in Prandtl number,
Permeability parameter, Frequency parameter and decrease in Heat sink parameter. The Nusselt number
at the wall y = 1 + & cos(Ax) decreases due to decrease in Grashof number and increase in Hartmann
number. The Nusselt number at the wall y = -1 + & cos(Ax + 0) increases due to increase in Prandtl
number, Permeability parameter, Frequency parameter. The Nusselt number at the wall y = -1 + € cos(Ax
+ 0) decreases due to increase in Hartmann number and decrease in Heat source parameter, Grashof
number.
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